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EXECUTIVE SMMARY

This specification establishes design criteria for the Flight Plan
4' Conflict Probe (FPCP), a part of the initial automation for the
N Advanced Automation System of the FAA's next generation air traffic

control system. The algorithm provides data for a display to air
traffic controllers whenever any two aircraft are predicted to

approach each other within certain separation criteria in the hori-
zontal and vertical dimensions. Such a' pair of aircraft is called a

c nflict.

Tajectory Estimation, another function of the Advanced Automation
System, models the predicted position of each aircraft as a trajec-
tory, consisting of points in (x,y,zt) space and the line segments
connecting them. Trajectories reflect both pilot intent (his
approved flight plan) and current position (radar reports). FPCP

S automatically tests all trajectory pairs for conflicts.

FPCP is designed to be compatible with current air traffic control
procedures. It displays information early enough for controllers to

*resolve conflicts in a deliberate fashion. It alerts the controller
when prompt action is deemed necessary to resolve a conflict. z

FPCP determines conflicts by using several separate processes.
First, a grid is established to partition the planning region into
cells defined in the horizontal and time dimensions. Those cells in
the grid through which the trajectory passes are identified and
designated as the aircraft's grid chain. The grid chains f or all
aircraft previously processed by the algorithm are maintained in one
data structure. Second, a preliminary or coarse filter compares the

4' grid chain of a specific aircraft to the grid chains of all other
aircraft; the aircraft pairs which do not have common cells in their%
grid chains, and hence are separated by large horizontal distances,
are eliminated from further consideration. Third, the remaining %5

pairs are tested to determine if their altitude ranges overlap J
within the co-occupied cells. For those that do, a final filter
analyzes the appropriate segments of the aircraft trajectories asso-
ciated with the common grid cells. The segments are first checked
to see if they overlap in time and violate vertical separation

* .. criteria within the common time interval. Those that do are tested
for violation of horizontal separation criteria. Information on
those segments which violate all of these criteria is maintained and
displayed to the controller at the appropriate time. C

Some data determined by Flight Plan Conflict Probe are stored in the
data base for access by Sector Workload Probe. -----------------

4 Distribution/
* ~Availability Cde

Code



WMET& T- T.Cfk- .1 TV .

"4

°o

TABLE OF CONTENTS

Page

1. INTRODUCTION 1-1

1.1 Purpose 1-1
1.2 Scope 1-1
1.3 Organization of this Document 1-2
1.4 Role of Flight Plan Conflict Probe in the Overall

ATC System 1-3

1.4.1 System Context 1-3
1.4.2 Effect of Future MAS Enhancements on Flight Plan

Conflict Probe 1-7

1.5 Flight Plan Conflict Probe Summary 1-8

1.5.1 Operational Description 1-8
1.5.2 Processing Overview 1-9

2. DEFINITIONS AND DESIGN CONSIDERATIONS 2-1

2.1 System Design Definitions 2-1

2.1.1 Resynchronization 2-1
2.1.2 Time Horizon, Delta Horizon, and Horizon Update 2-1
2.1.3 FPCP Trajectory Update 2-2
2.1.4 Segments, Cusps, and Segment Chains 2-2
2.1.5 Holding Patterns and Maneuver Envelopes 2-2
2.1.6 Airspace Grid and Its Cells 2-4
2.1.7 Cell Occupancy, Grid Chains, and Buffer Cells 2-6
2.1.8 The Sparse Subject Tree, Buffer Subject Tree,

and Allobject Tree 2-7
2.1.9 Nominees and the Coarse Filter 2-11
2.1.10 Encounters and the Fine Filter 2-11
2.1.11 Advisory and Priority Terminology 2-13

2.2 Design Considerations 2-16

2.2.1 Minimal Required Controller Knowledge of
Algorithms 2-16

2.2.2 Display Format 2-16
2.2.3 Considerations Involving Uncertainties in

Aircraft Position 2-16
2.2.4 Separation Criteria 2-17
2.2.5 Initiating the Display of FPCP Information 2-19

i ii

';,I I~~ ' ,'., ' . '.'/. .'.- . -. -..- , ..-.. ,.,.-,.......-. .....-.......- ,-...,.'.,.,..' ": ",-. " A. "'w . . . .... 4 " 4 " * 9 .".'" .p.9" ... *"' *" 9..'' *'" " .l' 4 " " ." ","9" .9 -. " " :' " "



' ' TABLE OF CONTENTS

(continued)

Page

2.2.6 FPCP, Sector Workload Probe, and the Airspace
Grid 2-20

2.2.7 Boundary Considerations 2-20
2.2.8 Controller Interface 2-21

3. FLIGHT PLAN CONFLICT PROBE FUNCTIONAL DESIGN 3-1

3.1 Environment 3-1

3.1.1 Input Data and Activation 3-1
3.1.2 Output Data 3-3

3.2 Design Assumptions 3-3
3.3 Subfunctions 3-4

3.3.1 The Grid Chain Generator 3-4
3.3.2 The Coarse Filter 3-7
3.3.3 The Fine Filter 3-8
3.3.4 Maintenance 3-9

4. DETAILED DESCRIPTION 4-1

4.1 Grid Chain Generator 4-1

4.1.1 Sparse Cell Generator 4-3
4.1.2 Buffer Cell Generator 4-25
4.1.3 Grid To Tree Converter 4-28

4.2 Coarse Filter 4-29

4.2.1 Nominee Detection 4-31

4.3 Fine Filter 4-35

4.3.1 Segment Pair Builder 4-394.3.2 Time Check 4-46

4.3.3 Altitude Check 4-49
4.3.4 Horizontal Check 4-53
4.3.5 Encounter List Builder 4-85

4.4 Maintenance 4-91

.. iv



- - I-.-r--. - .

; - • -.'. .. . . , • ,. . -. . • , " . - - -- . . .- -

C_.

TABLE OF CONTENTS
(concluded)

4.4.1 Delete Aircraft 4-94

4.4.2 Insert Aircraft 4-98

APPENDIX A: FLIGHT PLAN CONFLICT PROBE DATA A-1

APPENDIX B: MATHM(TICAL DERIVATION OF FORMULAS B-1

APPENDIX C: TREE TRAVERSAL TECHNIQUES USED BY THE
COARSE FILTER AND MAINTENANCE C-i

APPENDIX D: GLOSSARY D-1

APPENDIX E: AERA PDL LANGUAGE REFERENCE SUNfARY e-1

APPENDIX F: REFERENCES F-I

.'

- - t- - II



a-.

LIST OF ILLUSTRATIONS

Page

TABLE 4-1: SPARSE CELL LIST FOR FIGURE 3-2 4-18

FIGURE 2-1: THE SEGMENT CHAIN AND GRID CHAIN FOR A
TRAJECTORY 2-3

FIGURE 2-2: GEOMETRIC STRUCTURES ENCLOSING TYPICAL HOLDING
PATTERNS 2-5

FIGURE 2-3: AIRSPACE GRID IN THREE DIMENSIONS 2-9
FIGURE 2-4: TREE REPRESENTATION OF THE AIRSPACE GRID IN TWO

DIMENSIONS 2-10

FIGURE 2-5: ILLUSTRATION OF TREE WITH EARLY DIVISION ON T
ONLY: LATER DIVISION ON X,YT 2-12

FIGURE 2-6: RELATIONSHIP BETWEEN ADVISORY AND PRIORITY
SEPARATION CRITERIA 2-14

FIGURE 2-7: CRITICAL TIMES ASSOCIATED WITH ADVISORY AND
PRIORITY VIOLATIONS 2-15

FIGURE 2-8: UNRESTRICTED AND RESTRICTED VERTICAL MANEUVER
ENVELOPES 2-18

FIGURE 3-1: FPCP ORGANIZATIONAL STRUCTURE 3-2
FIGURE 3-2: SPARSE AND BUFFER CELLS ASSOCIATED WITH A

TRAJECTORY 3-6

FIGURE 4-1: GRID CHAIN GENERATOR ORGANIZATIONAL STRUCTURE 4-2

FIGURE 4-2: SPARSE CELL GENERATOR 4-5
FIGURE 4-3: CELL OCCUPANCIES USING CORRECT INDEPENDENT AXIS 4-8
FIGURE 4-4: CELL OCCUPANCIES USING INCORRECT INDEPENDENT

AXIS 4-9
FIGURE 4-5: DETERMINE INDEPENDENT VARIABLE 4-11
FIGURE 4-6: STRAIGHT LINE GENERATOR 4-13
FIGURE 4-7: AN EXAMPLE FOR A METHOD OF CONVERTING FROM GRID

CELL COORDINATES TO A TREE NOD9 IDENTIFIER 4-16
FIGURE 4-8: VERTICAL PROTECT 4-19
FIGURE 4-9: HOLD AREA PROTECT 4-22
FIGURE 4-10: OCCUPIED CELLS FOR A HOLDING PATTERN 4-24
FIGURE 4-11: BUFFER CELL GENERATOR 4-26
FIGURE 4-12: GRID TO TREE CONVERTER 4-30
FIGURE 4-13: COARSE FILTER ORGANIZATIONAL STRUCTURE 4-32

FIGURE 4-14: NOMINEE DETECTION 4-36
FIGURE 4-15: NOMINEE DETECTION ALTITUDE TEST 4-38
FIGURE 4-16: FINE FILTER ORGANIZATIONALSTRUCTURE 4-40
FIGURE 4-17: FINE FILTER GLOSSARY 4-41
FIGURE 4-18: FINEFILTER 4-44

vi

\JI



LIST OF ILLUSTRATIONS
(Concluded)

Page

FIGURE 4-19: SEGMENT PAIR BUILDER 4-47
FIGURE 4-20: TIME CHECK _ 4-50
FIGURE 4-21: ALTITUDE CHECK 4-52
FIGURE 4-22: HORIZONTAL CHECK 4-55
FIGURE 4-23: DELIVATION OF TIME OF MINIMUM SEPARATION 4-57
FIGURE 4-24: REGULAR SEGMENT HORIZONTAL CHECK 4-58
FIGURE 4-25: RELATIVE VECTORS 4-61
FIGURE 4-26: VIOLATION TIMES 4-64
FIGURE 4-27: MANEUVER ENVELOPE HORIZONTAL CHECK 4-66
FIGURE 4-28: CASES WHERE THE HOLDING PATTERN HORIZONTAL

CHECK IS INVOKED 4-68
FIGURE 4-29: EXAMPLE OF HORIZONTAL CHECK FOR A VERTICAL

MANEUVER 4-69
FIGURE 4-30: MANEUVER ENVELOPE TEST 4-71
FIGURE 4-31: ENVELOPEENVELOPEVIOLATION CHECK 4-73
FIGURE 4-32: GET BOX 4-76
FIGURE 4-33: ENVELOPE ENVELOPE INTERSECT CHECK 4-77
FIGURE 4-34: EDGE CONTAIWENT CH'ECK 4-78
FIGURE 4-35: SEGW=K EVEWLOPE-VIOLATION CHECK 4-81
FIGURE 4-36: SEQIENT-ENVELOP-INTERSECT_-CHECK 4-83
FIGURE 4-37: ENCOUNTfl LIST BUILDER 4-87
FIGURE 4-38: VIOLATION BOUNDARIES 4-90
FIGURE 4-39: PREFIX MERGE 4-92

- FIGURE 4-40: SUFFIX"MERGE 4-93
FIGURE 4-41: MAINTENANCE ORGANIZATIONAL STRUCTURE 4-95
FIGURE 4-42: DELETE AIRCRAFT 4-97
FIGURE 4-43: DELETE-SUBTREE 4-99
FIGURE 4-44: INSERT-AIRCRAFT 4-101

vii

.5,.,,"; , ,4 ," ? , .- i ---- . - .. .- - : . i.-. ... 2 :- -'- . . -: -..-. " .- ': -- -.- .. -. - .-. . .



.9

-A
-9

-4

*6

N
'C
~9

.4

t.
a.

4.

S

9'
a'
94 S

9"

a',

N
I',

4

*14

.1
9

.9

9.

-S.
-'-S

-a

S

*4

~4

5%.

~4~

~4

'a.
'a.

4

S. -
..............................

a -



1 • INTRODUCTION

The Federal Aviation Administration (FAA) is currently in the
process of developing a new computer system, called the Ad-
vanced Automation System (AAS), to help control the nation's
air traffic. The AS will consist of new or enhanced hardware
(i.e., Central Processing Units, memories, and terminals) and
new software.

The new software will retain most or all of the functions in
the existing National Airspace System (NAS) En Route Stage A
software. The algorithms will need to be recoded and, in some
cases, revised. In addition, the new AAS software will contain
several new functions that make greater use of the capabilities

of automation for Air Traffic Control (ATC). When fully imple-
mented, these new functions are intended to detect and resolve
many routine ATC problems.

The initial implementation of the AAS, described in the AAS
Specification [1], will provide the ability to detect some com-
mon ATC problems. To meet the requirements of the AAS, several
new ATC functions need to be postulated and described. Four of
these functions are described in this document: Trajectory
Estimation, Flight Plan Conflict Probe, Airspace Probe, and
Sector Workload Probe [Volumes 1, 2, 3, and 4]. Together, they
represent an initial level of automation and the beginnings of
the evolution of the ATC system in accordance with the NAS Plan
[2]. The NAS Plan presents an overview of the complete set of
changes proposed to HAS in the coming decade.

1.1 Purpose

The purpose of this volume is to identify design criteria for
Flight Plan Conflict Probe (FPCP). FPCP is one of the advanced
automation functions called for in the AAS Specification.
These design criteria specified in this volume are based on the
existing National Airspace System (HAS) and the specification
of the AAS. The AAS specification describes the Flight Plan

* Conflict Probe function and proposes some high level require-
ments for this function.

1.2 Scope

This algorithmic specification presents design criteria for a
computational framework of Flight Plan Conflict Probe. The
framework is a set of algorithms which collectively describe

how it may be possible to detect aircraft that are in danger of
violating certain separation standards. It may be viewed as a
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candidate for consideration in the final design. However, it
is not intended to be the complete final design of FPCP in the

S.

The framework establishes the requirements for input and output

data and provides a description of the flow of control of data
as it Is transferred from input to output. Some of the prin-

cipal requirements have been identified in the "Operational and
Functional Description of AERA 1.01" [3]. To the extent pos-
sible, the data are discussed using existing NAS terminology.

1.3 or&ganization of This Document

The remainder of Section 1 provides a description of Flight
Plan Conflict Probe's role in the larger ATC context and in
future enhancements of the ATC system. Both the operational
considerations and processing methods of FPCP are summarized.
Section 2 defines the terminology used in the specification and
discusses the factors which influence the design of the algo-
rithms.

Descriptions of the algorithms are contained in Section 3,
Flight Plan Conflict Probe Functional Design, and in Section 4,
Detailed Description. The Flight Plan Conflict Probe Function,
like the other advanced automation functions, is divided hier-
archically into subfunctions, components and elements
(underlined words in Sections 1 and 2 are critical to the
understanding of this specification and can be found in the

Glossary, Appendix D). Section 3 specifies the design, envi-
ronment, and assumptions of the subfunctions (e.g., the Fine
Filter), and outlines their components (e.g., Horizontal
Check). Section 4 provides a detailed description of each sub-
function's components, including their mission, data
requirements, and some processing details, and in some cases
includes a discussion of a component's elements (e.g., Maneuver
Envelope Horizontal Check).

Appendix A defines the data shared by the various subfunctions

of FPCP. (Similarly, Volume 5 of this document contains the
global data shared by the functions defined in Volumes 1
through 4). Appendix B provides mathematical derivations of

certain formulas used in this specification. Supplementary
Information on "trees," the data structure used by the Coarse
Filter, one of the subfunctions of FPCP, follows in Appendix
C. Appendix D, as mentioned above, contains a glossary of
those terms that are critical to an understanding of this
specification.

1-2
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A Program Design Language (PDL) which describes high level con-
trol logic using structured English is used as needed to
describe the algorithms in this specification. A description
of this PDL is contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Flight Plan Conflict Probe in the Overall ATC
System

This section discusses some features of the current ATC system,
describes the role of FPCP in the Advanced Automation System,
and discusses changes to FPCP that may be appropriate when en-
hancements to the AAS are introduced.

1.4.1 System Context

The Continental United States airspace is partitioned among 20
Air Route Traffic Control Centers (ARTCCs) or centers, which
control regions bounded horizontally by polygons and stretching
vertically from the center floor to 60,000 ft. Each center's
airspace is further divided into areas, which are in turn
divided Into sectors. Areas and sectors are polygonal regions
with floors (located at specified altitudes or thf ground) and
ceilings. The sectors of each area are staffed by a group of
air traffic controllers (or controllers) specially trained for
that area; the area supervisor is the first line supervisor oi
an area.

In the current ATC System, pilots determine the desired means
to reach their destination consistent with current navigational
and AIC practices. This intent is then filed with the ATC Sys-
tem as a 4lih lan (which may be approved by ATC as filed or
modified by TC). Alternatively, flight plans that are exe-
cuted daily or on a regularly scheduled basis reside in a data

N base and are filed automatically unless altered or suspended.
* A flight plan modification may be initiated At any time before

or during the flight by a controller or the pilot and must be
approved by the controller and the pilot.

Controllers are responsible for monitoring the flights which
pass through their sectors and for helping pilots achieve their

4objectives. They watch a set of symbols representing the air-
craft's radar track position as it moves across a plan view
display; the aircraft's identity, altitude, and other informa-
tion are also displayed. Controllers institute control actions
as needed, to perform such functions as separation assurance,
honoring pilot requests for new routes, rerouting flights to

1-3



avoid special use airspaces or severe weather, or queueing
aircraft into major terminal areas.

Separation assurance services provided by the current system
are described in the FAA's document "Air Traffic Control" [4].
Separation is provided in one of the three dimensions relative
to aircraft movement: vertical, lateral, or longitudinal.
Separation in any one of these dimensions Is sufficient. Ver-

ticl epration uses pilot reports of altitude supplementeadTy
baomtic data(Mode C reports).. Aircraft in level flight may

be assigned to specific flght evels., which are designated
altitudes (separated by 2000 teet at high altitudes). Level
aircraft occupying different flight levels have vertical sepa-
ration. The controller may provide vertical separation for an
aircraft that is maneuvering vertically by issuing altitude
restrictions, which direct the pilot to be at, at or above, or
at or below a specified altitude at a given point along its
flight path. Lateral separation applies to aircraft flying on
different routes whose airway widths or protected airspace do
not overlap. When routes do overlap, the controller may pro-
vide lonitudinal separation to assure that the two aircraft
reach the region of overlap at two different times or that the
aircraft are separated by a specific distance.

The plans of the FAA for the evolution of Air Traffic Control
are discussed in "Advanced Automation System, System Level
Specification" [1], and in "National Airspace System Plan
(NASP): Facilities, Equipment and Associated Development"
[21. According to the NASP, the "early capabilities [of auto-
mated Air Traffic Control] will include flight path conflict
probe which predicts future aircraft trajectories and examines
[them] for potential violation of separation standards."
According to the A.AS, Flight Plan Conflict Probe is performed

* on request or when an amendment is made to an active f light
plan."

1.4.1.1 Flight Plan Conflict Probe and AERA

The advanced automation functions f or the ATC System are part
of an automated system referred to as AERA ("Automated En Route
Air Traffic Control"). AERA is to be implemented in several
stages, as outlined in "Evolution of Advanced ATC Automation
Functions" [5). Flight Plan Conflict Probe will be implemented
as part of the first stage, known as AERA 1 (which is further
sub-divided into AERA 1.01 and AERA 1.02). Operational des-
criptions of the advanced automation functions of AERA 1.01 are
given in "Operational and Functional Description of AERA 1.01"

1-4
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Several other functions of the AAS are related to or interface
with Flight Plan Conflict Probe. The Trajectory Estimation
function [Volume 1] models the paths of aircraft through space
and time for use by other functions including Flight Plan Con-
flict Probe. These paths are called trajectories. The
Airspace Probe function [Volume 2] provides Information to air
traffic controllers on predicted aircraft violations of
restricted and warning areas, military operations areas, areas
Awith terrain obstructions, and special use airspaces. Airspace

Probe and Flight Plan Conflict Probe may share some data. The
:controller my Invoke theqe two functions in tandem when eval-

uating a proposed routing of an aircraft. Some outputs of FPCP
(and of Airspace Probe) are used by the Sector Workload Probe
[Volume 4), which provides information to A'TC supervisory per-
sone on measures related to workload in or-icr to assist them
in making decisions on sector staffing and .-- the amount of
airspace currently defining the sectors. The common data used
by the specifications are described and their relationships are
identified In "Data Specification" [Volume 5].

4- 1.4.1.2 FPCP and Other Functions Concerned With Aircraft
Separation

V. The following paragraphs describe three functions or systems
which are quite diverse in purpose, source of input data, and
look-ahead time, but which share with FPCP the objective of
outputting messages whenever certain traffic-related criteria

*are met. The subsequent section (Section 1.4.1.3) discusses
how FPCP satisfies needs not met by the other three systems.

En Route Sector Loading

En Route Sector Loading (ELOD) Is a major Central Flow Control
enhancement planned for 1983 implementation. Using Official
Airline Guide schedules, flighit plans, arrival times, and

*manually etrddata, ELOD isto determine areas ofprojected
traffic saturation in sectors and at selected points throughout
the U.S. Airspace. The traffic demand Is predicted over a
longer time period than the period associated with FPCP. An
alert message is generated if the projected traffic demand

* . count for any sector or point in a sector exceeds a threshold.
This information Is provided to the local flow management per-
sonnel in the center who may resolve the heavy traffic
situation.

ELOD Is likely to reduce the incidence of conflicts that would
occur without its presence. However, its intent is to estimate

1-5
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traffic demand on a continental scale rather than to predict
separation violations for Individual aircraft. It has no
Information about an aircraft'. current position or speed.

Conflict Alert

The currently-implemented Conflict Alert Function, described in
"National Airspace System Configuration Management Document:
Automatic Tracking" [6J, is designed to observe radar-tracked
data and alert the responsible controller when certain separa-
tion criteria are predicted to be violated. The time
thresholds involved are much shorter than ELOD's and too short
for Conflict Alert alone to assure routine aircraft separa-
tion. Although Conflict Alert is provided with current tracked
positions, speeds, headings, and assigned altitudes, it is

.N limited by a lack of knowledge of aircraft intent in the hori-4... zontal plane, and hence is subject to false alerts and missed
alerts. This limitation, in a sense, is opposite to that of
ELOD, which is dependent on intent, but not on tracked position.

Airborne Collision Avoidance Systems

Airborne Collision Avoidance Systems, such as the Traf fic Alert
x-. and Collision Avoidance System (TCAS), alert an aircraft's

pilot to collision threats as described in "Collision Avoidance
Algorithm f or Minimm TCAS 11" [7]. The controller Is not
involved with the alert. Like Conflict Alert, TCAS Is

*dependent on current relative tracked positions and velocities
of nearby aircraft but not on intent. To an even greater
degree than Conflict Alert, a TCAS alert (which appears some 30
seconds prior to predicted closest approach) implies that cor-
rective action is necessary; an ATC operational error has
probably occurred if the alert involves controlled aircraft.
Neither TCAS nor Conflict Alert is adequate for safe separation
of aircraft; both serve primarily as collision avoidance sys-

.~ *~teas.

1.4.1.3 Requirement for a Flight Plan Conflict Probe

A problem that exists with all of the above systems is that
none combines knowledge of intent with knowledge of tracked
position. The difficulty is that confidence in purely tracked
data diminishes rapidly as the projection period increases
beyond that of Conflict Alert (two minutes), while confidence
in flight plan accuracy, reasonably high on ELOD's coarse scale
of hours, diminishes rapidly when finer predictions are at-

~ q tempted. The time scales in the intermediate future, however,
are most appropriate as thresholds to alert controllers of

1-6
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conflicts: close enough in the future that corrective action
is required, but far enough in the future to allow the control-
ler time to resolve the conflicts in a routine and deliberate
fashion. With the introduction of the AAS, it becomes possible
for the first time to combine knowledge of tracked position and

intent on this intermediate time scale.

1.4.2 Effect of Future AAS Enhancements on Flight Plan
Conflict Probe

The role of FPCP may undergo certain modifications in future
enhancements of AERA. These modifications are described in
detail in "Operational and Functional Description of the AERA
Packages" [81.

1.4.2.1 Conflict Resolution

In AERA 1, the Flight Plan Conflict Probe is a detection ser-
vice only. The controller may respond to FPCP information by
planning, verifying and manually uplinking (by voice or data
link) resolution maneuvers for the aircraft. Later, the output
of FPCP will feed into an automatic resolution service called
Conflict Resolution. Conflict Resolution may itself need to
invoke FPCP to test proposed resolutions for possible conflicts
with some third aircraft. As automation proceeds, the control-ler's responsibility in planning and coordinating resolution

maneuvers will decrease. If necessary, however, he will be
able to revert to manual resolution of conflicts using FPCP (as
in AERA 1).

Implementation of Conflict Resolution may imply a change in the
criteria used by FPCP to determine conflicts. Additional fac-
tors may need to be taken into consideration as FPCP's output
is Increasingly used by other algorithms rather than by con-
trollers alone. These factors are discussed in Section 2.2.4,
Separation Criteria.

1.4.2.2 Long Range Probe

A function called Long Range Probe (LRP) is planned for
AERA 1.02. The algorithm and the operational use for this
function are still under development. The function may require
FPCP support in the form of input data. LRP will help a con-
troller decide whether to accept a proposed flight plan or
flight plan amendment (e.g., for an off-airway user-preferred
route). It will differ from Flight Plan Conflict Probe in that
it will not predict conflicts between specific aircraft pairs.
Rather, LRP will attempt to indicate the presence of heavy
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traffic areas to the controller to help the route approval
decision process.

LRP will complement FPCP by providing independent data to the
controller concerning proposed flight plan changes. In effect,

* A It will serve as an intermediate function between FPCP (which
has a shorter time-frame but uses intent like LRP) and ELOD
(which has a longer time-frame but uses statistical projections
like LIP).

1.4.2.3 Improved Input Data

As improvements are made on the quality of input to FPCP (pre-
dicted aircraft positions), FPCP may use progressively longer
look-ahead times for purposes of planning. Also, the separa-

4. . tion thresholds used to determine when to alert the controller
my be made smaller as ability improves to distinguish false
alerts. Possible input enhancements include the following:

e Implementation of Mode S data link (a digital two-way
air/ground communication system), which will permit

-. 4 better information on aircraft intent and improved
weather data (especially for winds aloft)

e improved vertical tracking

' incorporation into the automation data base of position
or intent information that is currently discussed and

agreed upon by the pilot and the controller via verbal
means only

1.5 Flight Plan Conflict Probe Summary

This section describes FPCP from an operational point of view
4. and gives an overview of its internal functioning.

1.5.1 Operational Description

The Flight Plan Conflict Probe informs controllers if the tra-
jectory of an aircraft violates, within a certain time period,
specific separation criteria in the horizontal and vertical
dimensions, with respect to the trajectory of another air-
craft. These criteria differ from the separation standards
currently in use by ATC as described in the FAA's document "Air
Traffic Control" [4]. If the separation criteria are predicted
to be violated for some pair of aircraft and the violation
occurs within the specified time period, a conflict is said to
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occur, and the controller is presented with a message describ-
ing the situation. The controller receives information early
enough to produce a resolution and to act promptly, if neces-
sary, In order to eliminate a conflict.

The message may be in the f orm of text and/or a graphic dis-
play. It Includes information such as the two aircraf t IDs,
routes, altitudes, predicted horizontal and vertical miss dis-
tances, and the time Interval when the separation criteria are
predicted to be violated.

FPCP distinguishes two types of conflicts: advisory and prior-
ity. A priority conf lict indicates that the controller should
begin a resolution determination process at once. The process
In assumed deliberate (rather than hasty); the criteria allow
f or complications but not for procrastination. An advisory
conflict does not necessarily require imediate attention.

N Separation criteria for priority conflicts use tighter thres-
holds than those used for advisory conflicts (see Section
2.1.11, "Advisory and Priority Terminology").

The controller my receive conflict information by requesting a
trial probe as def ined in "Operational and Functional Descrip-
tion of ARA 1.01- [3]. A trial probe involves the testing of
a proposed flight plan change which the controller enters
manually. The motivation f or a trial probe may be a pilot
request for a route change or the testing of a resolution of
one conflict to assure that It does not generate any other con-
flicts. The aircraft's current trajectory remains in the
global data base so that all other FPCP processing continues
during the trial probe the same way it would have in its ab-
sence.

1.5.2 Processing Overview

Flight Plan Conflict Probe is invoked automatically based on an
event associated with one specific aircraft called the sub-

* Ject. This event may be that the subject aircraft first enters
*the data base or its trajectory is altered or extended. other

aircraft in the data base (whose trajectories have at some pre-
* vious time been processed by FPCP as subjects) are designated

as ojects. FPCP compares the subject's trajectory against
thosi-e-ofich object.

When FPCP is invoked, the subject aircraft's trajectory is cor-
pared with the trajectory of object aircraft to rule out
objects that, for each interval in time, are separated from the
subject by large horizontal distances. The center's entire
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airspace, plus a buffer region, comprise the center's lann
region which is overlaid by a grid of cells in (x,y,tf space.
Certain cells which the subject and object aircraft trajectory

16, approach or pass through are marked "occupied." (The "occu-
pancy" criteria for the subject are different from those f or
the objects, as explained in Section 2.1.7. ) Objects are elim-
inated from further consideration if they do not share with the
subject the occupancy of at least one cell. The remaining ob-

V' jects are listed; they include all aircraft that will closely
approach the subject aircraft in the horizontal and time dimen-
sions.

The list is then edited to rule out pairs well-separated in the
vertical dimension. The sane vertical criteria are used for
both advisory and priority conflicts. For the level portions
of the subject aircraft's flight, the vertical criteria are
that no other aircraft penetrate within a vertical threshold of
its assigned flight level. For those portions of the subject's
flight involving vertical maneuvers, Trajectory Estimation pro-
vides a set of points that define a lower and an upper vertical

V bound as functions of tine. The vertical criteria are that no
aircraft penetrate these bounds. In practice, FPCP uses these
bounds to associate a single upper and lower bound with each
grid cell. As a result, a small percentage of objects may be
declared conflicts when they in fact are slightly outside the
vertical bounds (the extra computational burden of eliminating
them does not appear to be justified, particularly since the
upper and lower bounds can be set to ref lect this grid-based
approximation).

The f inal sequence of tests use rigorous, mathematical methods
to determine whether any of the remaining objects actually vio-
late the separation criteria with respect to the subject. Two
simple checks, one for overlap in time and the other for viola-
tions in the vertical dimension, are followed by a more
rigorous test in the horizontal dimension. FPCP considers the
distance between the subject and each object as a function of
time. If this distance is predicted to fall below a preselec-
ted threshold distance, the advisory/priority criteria are said
to be violated. The time at which this distance falls below
the threshold is referred to as the time of violation, which is
computed and stored in the data base.

Next, the time to display the conflict message is calculated.
The message is displayed far enough in advance of the time of
violation to allow a reasonable amount of time for the control-
1er to resolve the conflict. The length of this "reasonable"
interval of time is a system parameter. It may include
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allowances for complications (such as the failure of initially-
proposed resolutions), am well as tine to coordinate with
pilots and other controllers. The time at which the display
appears is simply the time of violation minus this parameter.



2. DEFINITIONS AND DESIGN CONSIDERATIONS

Section 2 defines terms that will be used in the following sec-
tions and lists design considerations that impact the choice of
an algorithm for FPCP.

2.1 System Design Definitions

Some fundamental terms which are used in this and other AERA
specifications have already been defined or discussed in Sec-
tion 1. This section will define additional terms, many of
which are used only in this specification. For easy reference,
a glossary of both the general and specific terms is included
in Appendix D.

2.1.1 Resynchronization

One type of automatic trajectory alteration is resynchroniza-
tion, defined as the task of recomputing the estimated
trajectory of an aircraft when the trajectory is inconsistent
with the aircraft's recent history (as determined by radar
track data and controller inputs). An AERA function called
Conformance Monitoring determines when resynchronizations are
necessary and Trajectory Estimation performs them.

2.1.2 Time Horizon, Delta Horizon and Horizon Update

Flight Plan Conflict Probe considers future trajectory informa-
tion only up to a certain time bound, called the time horizon.
The time horizon is far enough in the future that most
trajectories within a planning region are encompassed in their
entireties (i.e., only a few extend beyond the time horizon).
It is advantageous for Flight Plan Conflict Probe (and for
Sector Workload Probe) to process trajectory information as far
into the future as possible, although neither function depends
on the outputs from such processing beyond a certain time limit.

Should a trajectory contain a portion that extends beyond the
time horizon, that portion is not processed immediately by FPCP
(or SWP). Periodically, at intervals of delta horizon, the
time horizon is updated. Its value is incremented by delta
horizon. The event is called a FPCP horizon update, and it
causes an invocation of FPCP. A determination is made whether
a portion of any aircraft's trajectory is encompassed by the
updated, but not the original, time horizon. The set of such
aircraft is called the horizon subject set. FPCP treats each

aircraft, in turn, as the subject, considering only the inter-
val from the original to the updated time horizon. Any
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violations of separation criteria found during these invoca-
tions must be between two members of the horizon subject set.

2.1.3 FPCP Trajectory Update

A FPCP trajectory update is defined as any of the following
three events:

• A trajectory is added to the center's automation data
base for the first time.

• A trajectory already in the center's automation data
base is resynchronized by the Trajectory Estimation
Function. (Possibly the resynchronization was per-
formed in another center and timing information was
passed to this center.)

* A trajectory already in the automation data base is
altered due to an action by a controller or by another
AERA function.

Hereafter, the terms FPCP trajectory update and FPCP horizon
update will be shortened to trajectory update and horizon up-
date, respectively. (Note: SWP uses slightly different
definitions for these terms; the SWP terms do not appear in
this volume.)

In AERA 1, each trajectory update results in an invocation of
Flight Plan Conflict Probe (as well as Airspace Probe and a
subfunction of Sector Workload Probe).

2.1.4 Segments, Cusps, and Segment Chains

The flight path of an aircraft is actually a continuous, smooth
curve in four dimensions. However, aircraft flight paths are
approximated by a series of lines .(in space-time) called
segments, joined together at their endpoints, or cusps, to form
a trajectory or a segment chain (Figure 2-1). A trajectory's
segment is denoted in the data base by its component cusps.

2.1.5 Holding Patterns and Maneuver Envelopes

It may at times be necessary to delay an aircraft's en route
progress. For example, the terminal area at the aircraft's

destination may be saturated when the aircraft is due to arrive
there. In that case, a controller may direct the aircraft into
a holding pattern or hold at a point along its route, causing
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Figure 2-2 illustrates these two types of holding patterns.
The f igure also shows the geometric structures which enclose
these holding patterns and which are constructed by the Trajec-
tory Estimation Function to represent the holds in the data
base. The horizontal holding pattern is enclosed by a rectan-
gle and is limited to one flight level, while the holding
pattern with vertical extent is contained within a rectangular
block in (x,y,z) space which may span many flight levels.
Trajectory Estimation provides the vertices of these maneuver

p envelopes whenever a holding pattern is a part of an aircraft's
trajectory. It also provides the spatial and temporal entry
and exit points of the holding pattern maneuver. The z coor-
dinates of these points are equal if and only if the hold is
horizontal. These two points are generally referred to as
cusps, except when they need to be distinguished from regular

cup, in which case they are called holding pattern cusps.
.4 % Ne-entr&J and exit points of a holding pattern define a segmen It

of the trajectory. Whenever It is necessary to distinguish
A. such a segment from one defined for a trajectory with no holds,

the segment is referred to as a holding pattern segment (versus
a regular segment). otherwise, 'it is simply referred to as a

% segmnt, as described in Section 2.1.4 (Segments, Cusps, and
Segment Chains).

2.1.6 Airspace Grid and Its Cells

It Is useful to represent the planning region airspace by a
~ . grid in (x,y,t) space, called the airspace grid. The discrete

compartments in the airspace grid are called the grid cells, or
( simply cells. Each cell is bounded by surfaces parallel to the

x, y, and t axes (the projection of a cell into the (x,y) plane
is simply a square). The horizontal and time dimensions of the
cells are system parameters. Given these parameters, a cell
may be uniquely defined by three numbers corresponding to the

* - positions of the edges of the cell along each of the axes.
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It is assumed that a coordinate system is used which allows a
rasonably convenient means of interfacing data among centers,
even over wide geographical areas. Effects of the curvature of
the earth may cause the shape of the cells to deviate slightly

from their "ideal" square shape assumed here. Such effects are
not significant to the algorithm and are not discussed further
in this volume.

2.1.7 Cell Occupancy, Grid Chains, and Buffer Cells

As the trajectory of an aircraft traverses the airspace grid,
its segment chain intersects or occupies a sequence of cells.
In this section, cell occupancy is carefully defined so that
the subject and a given object are considered in conflict only
if they "occupy" at least one common cell. An effective strat-
egy in FPCP is to use a minimal number of cells to represent

4. trajectories for object aircraft, which are many in number,
while placing the burden of providing separation assurance on
the single subject aircraft. This strategy has the advantage
of greatly reducing the storage requirements for lists of occu-
pied cells, which are called grid chains. The cells drawn in
Figure 2-1 form the grid chain for the segments shown.

The cell list containing a minimal number of cells used in con-
junction with object aircraft is called the sparse grid chain.
The criterion for determining that a cell IS t ecniee a
member of the sparse grid chain is that the current aircraft

* segment chain penetrates the cell in such a manner that at
least two octants of the cell are intersected (octants play a
critical role in the Grid Chain Generator described in Sections

* 3.3.1 and 4.1). Less sparse representations may be used but
the associated PPCP algorithms are made less efficient.

It Is possible to construct pairs of trajectories which violateI
separation criteria while not producing overlapping sparse grid
chains. Therefore, sparse grid chains by themselves are not
suitable for FPCP separation assurance. Certain additional

buffer cells, neighbors of those in the sparse grid chain, are
selected for the subject aircraft. The list of these plus the
sparse grid chain is called the buffer grid chain. Enough buf-
fer cells are added to assure that for each violation of
separation between the subject and an object, the subject's
buffer grid chain and the object's sparse grid chain contain at
least one cell in common. Finally, we may define what is meant
by an occupied cell: for an object aircraft, it is any cell in
its sparse grid chain, and for the subject aircraft, any cell
in its buffer grid chain.
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When the cell size in the x and y dimensions is suitably
chosen, the buffer grid chain need include only the cells of
the sparse grid chain and all of their orthogonal and diagonal
nearest neighbors.

2.1.8 The Sarse Subject Tree, Buffer Subject Tree, and
Alobect Tree

Flight Plan Conflict Probe maintains a data structure called a
tree to represent the sparse or buffer grid chains of one or

( sore aircraft. In graph terminology, a tree is a set of nodes
(called tree nodes) connected by edge. with the following prop-
erties:

* Each tree node is assigned a nonnegative integer,
called the tree node's level, which represents the
tree node's position along the vertical axis of the
tree.

* Exactly one tree node, called the root, has a level of
-p. 0.

* Each edge connects tree nodes whose levels differ by
one. The lower level tree node (one closer to the
root) is called the parent of the higher level tree
node (one further away from the root), which, in turn,
is called the child of the lover level tree node.

a Each tree node other than the root has exactly one
parent. The root has no parent.

A tree node's ancestors consist of its parent, parent's parent,
and so on, all the way to the root. Its descendants are its
children, children's children, etc. A tree node with no chil-
dren is called a leaf.

In relational data base terms, a tree is represented by a table
showing all the parent-child relationships (tree edges). Both

parent and child are keys. In global tables, the tree nodesI
are always referred to (in full) as tree nodes, to distinguish
them from nodes in ATC terminology, where the word has an
alternate meaning. Although the ATC meaning of "node" does not
occur in this document, It is well-esatabli shed in the current
AIC system and may be used in future documents describing later
versions of AERA. In the text and in local tables in this
volume, the shorter form "node" will be used hereafter; the
term is always intended to mean a tree node.
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Each node Is associated with a portion, or block, of the grid.
The root of the tree represents the entire grid. Blocks asso-
ciated with a node's children are called octants or subblocks.
The leaves, which all have the same level, represent the cells

N7. of the grid. Each node's block contains the blocks of the
node's descendants and Is contained in the blocks of the node's
ancestors. Any set of cells in the grid (and, in particular,
the grid chains) may be represented by a tree containing a leaf
for each cell plus the ancestors of each such leaf.

Let n be the smallest positive integer such that a square 2n
cells wide (along each of the x and y axes) encloses the entire
planning region. Consider this square extended to a cube in
(x,y,t) space by projecting it along the time axis by 2 n
cells. The cube is a block In the above sense. The block may
be divided In half along each axis to f orm eight octants -
"northwest-early," "northwest-late," etc. Each octant may
Itself be divided in a similar way. A total of n divisions can
be carried out before the (indivisible) cell level is reached.
Figure 2-3 illustrates the procedure for n - 3, the level of
each leaf.

In FPCP, only the blocks containing occupied cells (called
occuiedblocks) are actually represented by nodes in the

tree. NW e-scresponding to blocks whose tells are all unoc-
cupied are not represented. The occupied cells form the leaves
of the tree. Figure 2-4 indicates how the tree representation
Is accomplished In two dimensions. Several journal articles
[9, 10, 11, 121 provide Bse useful theoretical results and
algorithms for quad trees (two-dimensional versions of the
three-dimensional octal trees used in FPCP).

Depending on the separation parameters, there may be several
% times as many cells along the t axis as along the x and y

axis. That is, the time from now to the time horizon, divided
by the width of the cell in the time dimension, may be larger
than the number of cells needed to span the planning region
horizontally. The discussion is somewhat simplified if the
ratio of the former to the latter is assumed to be a small
integer power of two. If the entire airspace grid were simply
halved repeatedly in each of the x, y, and t dimensions, cell
width would be reached in the x and y dimensions before cell
width is reached In the t dimension. It is desired, however,
to reach cell width In all dimensions at the final division,
corresponding to the tree's leaves. Therefore, the first few
branching levels from the root are binary, not octal, and
represent divisions of the grid on time alone. Octal branching
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begins only when blocks (of size 2
n ) are reached that have

the same number of cells in all three dimensions (Figure 2-5).

len FPCP is invoked, it creates two (local) trees, a buffer

subject tree and a sparse subject tree, which represent the
cells of the subject aircraft's buffer grid chain and of its
sparse grid chain, respectively. FPCP also maintains another
tree called the allobject tree, which represents the union of
the cells in the sparse gri chains of all aircraft in the
planning region.

2.1.9 Nominees and the Coarse Filter

A working hypothesis in this formulation of the, FPCP is that a
detailed comparison of a subject trajectory with each object
trajectory in the planning region, using a mathematically
rigorous statement of aircraft intent and the FPCP separation
criteria, is computationally inefficient. Some prescreening is
needed to eliminate subject-object pairs from further consid-
eration when they "obviously" are well separated (in space or
time). The existence of prescreening is justified, in prin-
ciple, since it reduces the overall processing time of the FPCP
algorithm. In practice, it has a secondary justification-the
data used for prescreening provide useful information for Sec-
tor Workload Probe.

A first-level screening, called a Coarse Filter, is performed
in order to eliminate object aircraft that are well separated
from the subject. The remaining objects, called the nominees
or nominee aircraft, are listed for further screening. No
objects that violate the FPCP separation criteria are omitted
from this list.

2.1.10 Encounters and the Fine Filter

The Coarse Filter produces nominees which may not actually vio-
late the FPCP separation criteria. Another filter, called the
Fine Filter, invokes algorithms that, through more rigorousmathematical analyses conducted on subject-nominee segment
pairs, can identify those nominees whose trajectories violate

both the FPCP I-rizontal and vertical criteria with that of the
subject aircratL. If such a violation is found to exist, the
event is called an encounter and the aircraft intruding Into
the subject aircraft's airspace is called an encounter air-
craft. If neither aircraft's trajectory changes, the encounter
will, with the passage of time, become an (advisory) conflict.
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2.1.11 Advisory and Priority Terminology

The Fine Filter uses two distinct sets of criteria in its
testing for conflicts in the horizontal and time dimensions,
one for advisory and the other for priority conflicts (in the
vertical dimension, the same criteria are used for both types
of conflicts). Each set of criteria consists of a threshold

for the horizontal test and another for the time to display
test. In the horizontal and time dimensions, a pair of air-
craft are said to be in conflict if the horizontal separation
distance between the aircraft is less than the horizontal sepa-
ration threshold and the time until the separation between the
aircraft reaches this horizontal threshold is less than the
time threshold.

The first set of criteria consists of the horizontal separation
threshold or advisory Seph (Separation horizontal) and the time
threshold or advisory Sept (Searation ime).

The advisory time of violation is the time at which separation
first falls below the advisory Seph. An advisory message,
featuring information on a conflict, is displayed to the con-
troller at the display-as-advisory time, which is the later of

" the time prior to the advisory time of violation by the
amount of the advisory Sept

" the current time

If the time of violation is currently less than the current
time plus the advisory Sept, an advisory message may be dis-
played at once and the criteria discussed below are tested.
Figure 2-6 illustrates the relationship between Seph and Sept
for advisory and priority conflicts. In Figure 2-7, the
display-as-advisory time and advisory time of violation are
identified relative to the separation between a pair of air-

craft and the point of closest approach.

The second set of criteria are analogous to the first, except
the values of the thresholds, priority Seh and priority Sept,
are smaller. The priority time of vio ation is the time at
which separation falls below the priority Seph. Information on
such an encounter would be displayed to the controller in a
prioritay essage at the display-as-priority time, which is the
later of

o the time prior to the priority time of violation by the
amount of the priority Sept
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. the current time

2.2 Design Considerations

This section lists considerations that must be taken into

account when designing an algorithm for FPCP.

2.2.1 Minimal Required Controller Knowledge of Algorithms

The FPCP algorithm has been designed so that the controller may
use the information generated without knowledge of the algo-
rithm's details. An operational understanding of the algorithm
may be useful so that the controller can interact and utilize
the functions and their outputs.

2.2.2 Display Format

This specification does not address the formats that may be

used to display FPCP data outputs or to enter requests for a
trial probe or a list of encounters. It has been written under
the assumption that the display Is flexible and easy to use
(perhaps menu driven), has some standard editing capability,
and can satisfy both the controller who wishes to explore every
feature as well as the controller who wishes to minimize the
time required to learn how the function is used.

2.2.3 Considerations Involving Uncertainties in Aircraft
Position

FPCP performance is only as good as the automation data base,

including approved flight plans, weather, aircraft performance
information, and estimated trajectories. Should a controller
approve a modification to a flight plan but fail to enter the

information into the data base, any displayed conflicts for the
aircraft will likely be erroneous since they are based upon an
obsolete trajectory. Also, actual conflicts resulting from the
new flight plan may not be detected and displayed.

There are ways that erroneous trajectories can be detected
automatically for manual or automatic revision. In AERA 1,

- disparities in the longitudinal (along track) direction between
the estimated trajectory and radar return for an aircraft are
corrected by resynchronization (although not immediately due to
tracker lag). Trajectory Estimation modifies the stored value
of the aircraft's speed to account for the observed error, and
recomputes the trajectory. Lateral (across track) disparities
are not corrected automatically, since when such an error
occurs, an aircraft can no longer be assumed to be following
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its flight plan. A message indicating the disparity is
displayed to the controller, who may update the data base. In

the meantime, systems that do not use the automation data base
(such as Conflict Alert and TCAS, described in Section 1.4.1.2)
serve as backups. In case of conflicts involving an aircraft
with a lateral disparity, an indicator of the disparity

accompanies the display of conflict information.

2.2.4 Separation Criteria

The values of FPCP horizontal separation criteria (advisory and
priority) are an issue that is still the subject of study.
They influence directly the optimal selection of cell size in
the horizontal (x and y) dimensions. The AAS Contractor should
regard separation parameters and cell size as constants to be
determined. A number of factors may influence the choice of
the horizontal criteria. The rate of false alerts is one fac-
tor. Another is the trade-off between resynchronization rate
and the advisory (and priority) Seph: as more error is allowed
before triggering a resynchronization, FPCP must use larger
thresholds to assure separation just prior to the resynchroni-
zation. It is possible that the time elapsed since the last
resynchronization is a factor also.

In later stages of automation, factors that are less easily
measured may become important in setting horizontal criteria.
These factors may include the overall complexity of the situa-
tion, additional conflicts caused by possible resolutions,

current/ future controller workload, metering plans, etc.

In the vertical dimension, separation criteria for FPCP are
more easily defined: all altitudes that an aircraft may
legally reach (subject to controller restrictions) and can
physically attain (subject to considerations of weather,
weight, etc) must be protected.

Trajectory Estimation provides information to FPCP regarding
vertical separation criteria. An upper and lower bound are
associated with each vertical maneuver. These bounds, like
trajectories, consist of points or vertices in four-space con-
nected by lines. The upper portion of Figure 2-8 illustrates a
simple case, where a descent has been cleared with no inter-
mediate restrictions. To achieve vertical separation, other

Saircraft must pass outside the bounds. Trajectory Estimation
provides four vertices which identify a vertical maneuver
envelope. The four vertices are as follows:
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Legend:

I - left upstream vertex
2 - left downstream vertex
3 - right downstream vertex
4 - right upstream vertex
a - first maneuver envelope
b -second maneuver envelope

FIGURE 2-8
UNRESTRICTED AND RESTRICTED VERTICAL MANEUVER ENVELOPES
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1. The earliest point at which the maneuver may begin
(left upstream vertex in a descent)

2. The point at which the desired altitude Is reached,
if the aircraft maneuvers at its maximum vertical
rate as early as possible (left downstream vertex)

3. The latest point at which the maneuver may begin
(right upstream vertex)

4. The latest point at which the desired altitude must

be reached, or some point far in the future if no
such constraints exist upon the maneuver (right down-
stream vertex)

The controller may direct the pilot to achieve a given altitude
(at, at or above, at or below) by a given place along the
course. The maneuver envelope can be split into two separate
maneuver envelopes to model this situation. For example, in
the lower portion of Figure 2-8, the pilot has been instructed
to be at or below the indicated altitude by point P on the
course. The vertices defining the envelope around the first
part of this maneuver are labelled la, 2a, 3a, and 4a, while
those defining the second envelope are labelled lb, 2b, 3b, and
4b.

Note that very large amounts of vertical airspace may need to
be protected in the absence of intermediate restrictions. How-
ever, a small number of such restrictions, even just one, can
result in large reluctions in the amount of airspace needing
protection.

In level flight, FPCP uses as upper and lower bounds the flight
altitude plus or minus a vertical threshold (a global constant
with different values for altitudes below and above 29000 feet).

2.2.5 Initiating the Display of FPCP Information

When FPCP has completed its search for encounters involving the
subject aircraft, the updated information is made available to
the display function, including the display-as-advisory and
display-as-priority times. The display function displays the
advisory or priority message for an encounter to the
appropriate controller(s) when the current time reaches the
encounter's display-as-advisory or display-as-priority time.
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2.2.6 FPCP, Sector Workload Probe and the Airspace Grid

This specification assumes that SWP and FPCP use a common air-
space grid. This assumption may allow considerable savings in
computer storage and execution time. The updating of the grid
is a significant portion of the FPCP processing which, with a
common grid, needs to be done only once per invocation of
FPCP. The width of the FPCP grid cells in the horizontal and
time dimensions are system parameters. There are certain
implications in setting them equal to the respective horizontal
and time widths of the SWP cells.

The exact horizontal dimensions of the grid cells are, within
broad limits, not critical to SWP. They are critical to FPCP;
the exact value is still to be determined but is expected to
fall within SWP's broad limits. On the other hand, the exact
dimension of each grid cell in the time dimension is, within
broad limits, not critical to FPCP but is critical to SUP.
Multiplied by 2k for some positive integer k, it must equal
some convenient length of time (e.g., 15 minutes, rather than,
say, 13.79) over which the outputs are calculated and dis-
played. Further study may prove that the optimal range of the
grid cell's time extent for FPCP does not include a value com-
patible with SWP's need for a conveniently-sized time unit. If
so, grid-commonality implies that the cell's time extent must
be rounded up to such a value, at the cost of more nominees and
more calls to the FPCP Fine Filter. There are certain advan-
tages, however, even apart from SWP considerations, for the
FPCP grid to be divided on the time dimension in convenient
clock increments, even if these are not quite optimal in
reducing nominees. For instance, to do a trial probe the
controller might want a list of all encounters with display-as-
advisory times earlier than 3:00 p.m.

%

The costs associated with assuming common grids for both SWP
and FPCP appear to be outweighed by the benefits. It is worth
noting, however, in view of the fact that SWP and FPCP system
parameter values have yet to be determined, that different
grids could be used for SWP and FPCP without substantial
changes in either specification. The Grid Chain Generator
(Section 4.1) would simply be run twice, once for each grid,
and at each trajectory update, both grids and both trees would
be updated.

2.2.7 Boundary Considerations

FPCP determines conflicts throughout the planning region, which
includes the center plus a buffer region. The algorithm has
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been designed under the assumption that controllers have as
much time to resolve conflicts transitioning into their center
as they have for conflicts entirely within the center. For
boundaries with non-AERA airspace, the buffer region is assumed
large enough to allow the usual level of information promptness
and completeness for any conflict with a point of violation
within the center's airspace.

2.2.8 Controller Interface

This section discusses controller interface issues, including
who may access FPCP outputs and who may trigger and/or accept a
trial probe.

2.2.8.1 Who Is Informed of Conflicts

This specification does not present an algorithm for deter-
mining which controllers are notified automatically of
conflicts. For FPCP to work as designed, however, the control-
lers who are responsible for resolving the conflicts (including
those responsible for the sectors the aircraft will occupy at
the display-as-priority time and perhaps the display-as-

advisory time) must be notified automatically. It may be
necessary to notify the controller who would be responsible if
the controller(s) currently responsible fail(s) to resolve the

conflict. Other controllers may benefit from seeing the con-
flict data upon request. It may also benefit the controllers
responsible for conflicts to be able to access, upon request,
data concerning encounters (which may become conflicts in the
near future).

2.2.8.2 Trial Probes

This specification places no explicit constraints on who may
perform trial probes. Any controller may probe any aircraft
having a current trajectory. In later versions of AERA, auto-
mation functions such as Conflict Resolution and Metering may
invoke a trial probe. Any number of controllers or functions
may perform trial probes simultaneously, but each may test only
one trial trajectory (that of its subject aircraft) at a time.

2.2.8.3 Who May Accept Trial Flight Plans

No change is anticipated for AERA 1 in the current rules for
4. deciding which controller may give a clearance to a pilot for a

new plan. These rules are discussed in the FAA's document "Air
Traffic Control" [4]. Controllers must coordinate clearances
with each other under AERA 1 just as they do in NAS.
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3. FLIGHT PLAN CONFLICT PROBE FUNCTIONAL DESIGN

Figure 3-1 illustrates the high-level organizational structure
of the Flight Plan Conflict Probe algorithm.

3.1 Environment

This section describes required input and output data, and
lists conditions causing activation of the FPCP algorithm.

3.1.1 Input Data and Activation

3.1.1.1 Input Data

The input to FPCP consists of:

e The trajectory and maneuver envelopes of each aircraf t
in the data base, and the trial trajectory and maneuver
envelopes, if any

* The stimulus for Invoking FPCP (trajectory update, hori-
zon update, trial probe)

* The identity of the subject's trajectory (trajectory
update and trial probe only)

* The identity of the trial trajectory (trial probe only)

3.1.1.2 Automatic Activation Sequences

Flight Plan Conflict Probe is triggered automatically by either
a trajectory update or a horizon update.

3.1.1.3 Controller Initiating Sequences

A controller may initiate a trial probe. for a particular air-
craft. The controller enters a trial flight plan for the
aircraft into the system and its trajectory is constructed by
the Trajectory Estimation Function. FPCP is invoked with this
aircraft as the subject. However, the current (original) tra-
jectory would be used should FPCP be invoked immediately
thereafter for a different subject, either automatically or via
another controller's trial probe.

3-1
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FIGURE 3-1
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3.1.2 Output Data

3.1.2.1 output to Global Data Base

FPCP contributes the following to the global data base:

eA table containing information on each current encoun-
ter, including the identity of the aircraft involved and
the geometry of the encounter. It is the culmination of
the FPCP processing. The data are accessed by Sector
Workload Probe.

e A table containing information on each encounter that
has been determined no longer current (due to a trajec-
tory update). Sector Workload Probe uses this table for
housekeeping purposes, after which it deletes the table.

.A table containing information on the sparse grid chain
of each object aircraft. Flight Plan Conflict Probe
creates this table for determining conflicts. This
table is also used by Sector Workload Probe to determine
time and sectoring information for workload distribution.

FPCP makes information on encounters available to the display
function (not described in this specification). The table pro-
vides enough Information to determine when to display advisory
and priority messages.

3.2 Design Assumptions

Three stimuli can cause an invocation of FPCP: the trajectory
update, horizon update, and trial probe. The subfunctions are
developed with the stimulus type as an input and use algorithms
common to all three types. Any special logic required to

* perform an operation particular to a given stimulus can be
invoked when necessary.

For a trial probe, two additional inputs must be passed to
FPCP: the identity of the subject aircraft's trial trajectory,
and the Identity of its existing trajectory. By the time of
FPCP invocation, Trajectory Estimation will have output both
trajectories to the global data base. The trial trajectory's
identity must differ from that of the subject (as well as from
those of the other aircraft) in order to avoid determining a
conflict' of the subject with itself.
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S For a trajectory update, the subject's identity is input to
FPCP. Again, by the time of FPCP invocation, Trajectory Esti-
mation will have updated the subject's trajectory.

For a horizon update, FPCP requires no inputs except the stimu-
lus type. FPCP is invoked periodically, at intervals of delta
horizon. It determines the set of aircraft whose tra-
jectories extend beyond the time horizon. The portions of the
trajectories which are within a time interval of length delta
horizon beyond the time horizon are processed in turn, leading
to the identification of possible encounters. All of the
subf unctions of FPCP, that is, the Grid Chain Generator, Coarse
Filter, Fine Filter, and portions of Maintenance are invoked,
in turn, for each trajectory portion.

3.3 Subfumctions

3.3.1 The Grid Chain Generator

The Grid Chain Generator (GCG) uses the cusp data from the tra-
jectories as input data for the subject aircraft. It orders
these by time into consecutive pairs to form segments. It also
uses data on the maneuver envelopes to provide additional pro-
tection about the subject aircraft's maneuvers. Its outputs
are the following:

- - *The sparse grid chain
e The buffer grid chain
* The sparse subject tree
* The buffer subject tree

3.3.1.1 The Sparse Grid Chain

The Grid Chain Generator algorithm loops through each segment
of the subject's segment chain, marking certain cells it passes
through am occupied (as defined in Selction 2.1.7, Cell Occu-
pancy, Grid Chains, and Buffer Cells) and adding them to the
sparse grid chain. First, the cell containing the segment's

* (beginning) cusp is added to the grid chain. The direction (x,
y, or t0 in which motion through the grid is most rapid (in
term of the number of cells crossed per unit length) is desig-
nated the steepest direction.

A point on the segment is considered whose projection Is one
cell width farther along the axis of the steepest direction;
the cell in which it lies is added to the grid chain. This
cell is an orthogonal or diagonal neighbor of the previous
cell. Note that the trajectory may pass through other cells
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that are not marked occupied. Such cells are only "nicked" bypthe segment, i.e., the segment intersects only one octant.

The GCG continues adding occupied cells to the grid chain in
this manner until the cusp marking the next segment is
reached. For the new segment, the steepest direction is
updated if it changes, and the cell occupied by the beginning
cusp is added (if it is not already in the grid chain). The
process continues until the last segment is reached.

Figure 3-2 illustrates an example in two dimensions. TWO
straight line segments joined by a cusp are shown. The corres-

ponding occupied cells are marked by a shaded circle. Such
cells compose the sparse grid chain.

3.3.1.2 Vertical Maneuvers and Holding Patterns

The sparse grid chain as derived from the trajectory informa-
tion requires no further modification for trajectory segments
representing straight lines or turns in level flight. However,
the existence of vertical maneuvers and holding patterns neces-
sitates the addition of extra protection about the nominal
trajectory derived solely from the cusp data.

In the case of vertical maneuvers, the altitude range to be
protected for each sparse cell is stored.

The case of a holding pattern may require the use of additional
cells to protect against uncertainty in the aircraft's
position. The cells added represent the union of (a) those
cells that would be added to the sparse grid chain were each

* boundary edge of the geometric structure enveloping the holding
pattern (in (x,y,t) space) treated in turn as a segment, and

* (b) any Interior cells.

3.3.1.3 The Buffer Grid Chain

The buf fer grid chain is a list of all cells whose x, y and t
coordinates differ by no more than one cell width f rom a cell
in the sparse grid chain. Buff er grid chain cells are shown as
unshaded circles in Figure 3-2. The sparse grid chain's cells
form a subset of the cells of the buffer grid chain.

It can be shown that if no cells of the buf fer grid chain of a
subject aircraft coincide with a cell of an object's sparse
grid chain, the subject and object do not violate the FPCP
separation criteria. %
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3.3.1.4 Information Stored with Sparse and Buffer Cells

The grid chain includes the following information for each of
its cells:

*the trajectory identifier (sparse cells only)

e a cell number called a node identifier

* the earliest and latest times of the first and last
segments, respectively, occupying the cell

9 the minimum and maximum altitude for which protection is
provided

3.3.1.5 Generating a Tree from a Grid Chain

The last task of the Grid Chain Generator is to construct the
sparse subject tree and the buffer subject tree. The trees are
built from the leaves to the root. Each cell in the sparse

* grid chain is referenced by a leaf in the tree. The GCG stores
each parent node/child node relationship for the subject. This
consists of determining the unique (2x2x2) block (composed of 8j
cells) containing the cell. The cells and blocks may be num-
bered In such a way that these relationships can be identified
by bit manipulations on the cell number. A tree node is
created for the block if none yet exists. A two way link is
established between the cell's node (the child) and the block's
node (the parent). A list is made of each 2x2x2 block that is
represented in the tree. Next, the process is repeated to in-
clude in the tree the 4x4x4 blocks containing the 2x2x2 blocks,
and so on, until the whole airspace (root of tree) is reached.

A temporary tree is built for the buffer grid chain in a simi-
lar way except that the subject trajectory identifier is not
needed.

3.3.2 The Coarse Filter

The Coarse Filter searches each cell of the subject's buffer
grid chain to see if it is also a cell in the sparse grid chain
of any of the object aircraft. The algorithm outputs a nominee
table, which specifies for each object aircraft which cells are
co-occupied with the subject and which segments are responsible
for each co-occupancy. The nominee table is passed on to the
Fine Filter (Section 3.3.3) for further, more detailed tests.
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In practice, it is not always necessary to search each cell in
the subject's buffer grid chain. The fact that the grid chains
are stored as trees allows the algorithm to terminate a search

quickly if no object aircraft are in the vicinity of the sub-

ject. The algorithm compares the subject's tree with the
allobject tree. An absent node in either tree indicates vacant
airspace in the corresponding block of the (x,y,t) grid. If a

node is absent in one or both trees, the Coarse Filter does not
need to look at any descendants of the node (i.e., subsets of
the node's (x,y,t) block). Appendix C develops some background
on trees and the technique of recursion which is necessary in
order to explain the Coarse Filter processing in more detail.

Once an object aircraft is found to co-occupy an (x,y,t) cell

with the subject, the altitude test simply checks for overlap
of the two ranges (subject's minimum altitude this cell, sub-
ject's maximum altitude this cell) and (object's minimum
altitude this cell, object's maximum altitude this cell). When
an overlap occurs, the necessary data on the subject and object
segments contained in the cell are added to the nominee table.

3.3.3 The Fine Filter

The Fine Filter of Flight Plan Conflict Probe is a subfunction
designed to identify all encounters (i.e., violations of FPCP
separation criteria) between a single subject aircraft and an
object aircraft in the nominee table provided by the Coarse
Filter. It accomplishes this task by analyzing the segments of
aircraft trajectories which are associated with co-occupied
cells identified in the nominee table. Specifically, for every
object aircraft in the nominee table, the Fine Filter performs
a series of tests to determine if the subject and object air-
craft segments which are associated with a co-occupied cell
violate FPCP vertical and horizontal separation criteria. A

special check is made to assure that no two segments are com-
pared more than once, thus avoiding duplicate processing. If
an encounter between the subject aircraft and a nominee is
detected, then a table which maintains encounter information
for all of the aircraft in the planning region is updated with
this latest information.

3.3.3.1 Tests of Time and Space

The subject and object aircraft segment pair undergo a series
of tests in time and space which indicate whether or not an
encounter is possible. The tests are performed in sequence,

each successive test checking for segment non-compliance with
stated goals in a particular dimension. Only those segment
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pairs which do not satisfy a goal are passed on to subsequent

tests. All other pairs are eliminated from further considera-
tion. Thus, it is desirable that the tests be ordered so as to

eliminate as many of the non-conflicting segment pairs as pos-
sible during the earlier stages of the process. Accordingly,
the segments are first checked in time. If they overlap in
time, they are checked for violation of vertical separation

within the time interval in common between the two segments.

The vertical separation criterion is a function of the alti-

tudes of the aircraft. If the vertical separation criterion is
violated during the common time interval, the segments are
tested for violation of horizontal separation criteria. If
both criteria are violated, an encounter is predicted to occur
along the segments. Information relevant to each encounter,
such as the minimum separation distance in the horizontal plane
and the time of minimum separation, is calculated and stored in
an encounter table.

3.3.3.2 The Encounter Table

The encounter table is contained in the global data base and
provides information about all aircraft in the planning region
that are predicted to be involved in an encounter. Within the
table is stored information about every encounter detected by
the temporal and spatial tests. The table contains the flight
plan identifications and a set of parameters which, include the
start and end times of the advisory and priority violations,
the display-as-advisory and display-as-priority times, the
minimum separation distance of the aircraft in the horizontal
plane, the time of minimum separation, and the positions
(x,y,z) of the aircraft at the start and end of the advisory
violation. This information is available to the AERA display
function which notifies the appropriate controller(s) of
possible conflicts.

3.3.4 Maintenance

Flight Plan Conflict Probe requires that up-to-date versions of
all relevant data tables must be maintained. For this reason,
FPCP includes as one of its principal subfunctions a procedure
called Maintenance. Maintenance adds and deletes data asso-
ciated with specific flight identifications from appropriate
global and FPCP shared local tables. Details of the Main-
tenance subfunction are provided in Section 4.4, Maintenance.
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4. DETAILED DESCRIPTION

The Flight Plan Conflict Probe has four subfunctions:

o Grid Chain Generator
e Coarse Filter
* Fine Filter
e Maintenance

The first three subfunctions are activated in succession as
they are listed. The fourth subfunction is invoked as needed.
The Grid Chain Generator preprocesses trajectory data to
produce a set of cells occupied by the subject aircraft and
produces a tree representing these cells. The Coarse Filter
compares this set of cells for the subject against corres-
ponding cells for the objects to determine any cells in both
sets. The aircraft pairs are tested for violations of the
vertical separation criterion within these co-occupied cells.
For pairs with vertical violations, the Fine Filter analyzes
the segments of the trajectories corresponding to the common
cells. Tests are made sequentially to check if the segments
overlap in time, altitude and horizontal distance. The
Maintenance Subfunction updates the various local and global
data structures, as required, during processing of the other
subfunctions.

4.1 Grid Chain Generator

The Grid Chain Generator subfunction of FPCP is used to
generate the sparse and buffer grid chains for the subject
aircraft. Also, it generates the Sparse and Buffer Subject
Trees to represent the cells of the respective grid chains.
The Buffer Subject Tree is used by the Coarse Filter to detect
co-occupied cells which indicate nominee status and the need
for further checking by the Fine Filter. The Sparse Subject
Tree is used by the Maintenance subfunction for insertion of
the subject into the Allobject Tree and is kept for future use
by Maintenance.

The Grid Chain Generator consists of three major components: a
Sparse Cell Generator to generate a sparse grid chain for the
subject trajectory, a Buffer Cell Generator to generate a
buffer grid chain for the subject, and the Grid To Tree
Converter to convert a sparse or buffer grid chain to a Sparse
or Buffer Subject Tree.

The organizational structure of the Grid Chain Generator is
illustrated in Figure 4-1.
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4.1.1 Sparse Cell Generator

4.1.1.1 Mission

The Sparse Cell Generator component of the Grid Chain Generator
updates a global table listing all cells occupied in the sparse
sense by the current subject aircraft trajectory. it
accomplishes this objective by using data that describes the
subject's nominal trajectory in (r,yz,t) space. It also sets
upper and lower altitude protection limits for each cell
associated with a vertical maneuver or holding pattern segment.

4.1.1.2 Design Considerations and Component Environment

This component requires, as local Inputs, the unique identifier
for the subject aircraft flight plan (SubjectFlId), the start
time for the evaluation (TStart), and the end time of the
evaluation (T_-Horizon). Usuially, TStart will be the present
time, btfrahorizon update it will be the old time horizon
less one cell time Interval, and f or a trial probe it will be
one time cell less than the time of divergence from the current

* trajectory. The input T Horizon is the current time horizon.
These inputs are provided-by ithe Grid Chain Generator component.

Sparse Cell Generator also uses information from the global
table TRAJECTORIES which describes the position and time of
each trajectory cusp, as well as the type of maneuver envelope
(if any) associated with each cusp.

Inf ormtion on maneuver envelopes is provided by the global
table MANEUVERENVELOPES and is used by the elements of Sparse
Cell Generator. The table, SPARSECELLS, which Is updated by
the elements of Sparse Cell Generator, is also a global input.

output

The output of Sparse Cell Generator Is an updated version of
the global table SPARSECELLS. This table contains information
which is calculated by the elements of Sparse Cell Generator.
It contains a list of cells that are occupied in the sparse
sense by the subject aircraft's trajectory.
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4.1.1.3 Component Design Logic

* The Sparse Cell Generator uses a number of elements in
fulfilling its goals. The organization and calling sequence of
the Sparse Cell Generator is given as follows:

I Sparse Cell Generator
I Determine Independent VariableI

I Straight Line GeneratorI
* Encode

PDL in Figure 4-2. First, this component locates all TRAJEC-
TORY records pertaining to the subject aircraft trajectory. It

* . .. then transfers the required data from that table to local
arrays which are ordered by time. A count of the records
retrieved is noted.

Consecutive pairs of cusps are taken together to form trajec-
.~. ~tory segments. Sparse Cell Generator's main loop is repeated

for all cusp pairs starting with the segment that bridges the
starting time (or the first segment, if none do) and ending

- . with the segment that bridges the time horizon (or the last
segment, if none do).

The coordinate data and the time data for the cusp pairs is
operated on by the elements Determine Independent Variable and

*Straight Line Generator. These elements are responsible for
translating each segment into a sparse chain of occupied cells
for the trajectory's regular segments. All segments are
processed in this manner before processing begins for maneuver
envelopes. This order is followed because altitude limits for
cells occupied by the segments which follow the envelope may be
affected by the vertical maneuver. These cells must be
selected before attempting to calculate their altitude limits.

Following the creation of the sparse cells for the nominal
trajectory, the Sparse Cell Generator loops on all of the
segments searching for mianeuver envelopes. If a vertical
maneuver is found, then the Vertical Protect element is
called. If a holding pattern is found (with or without
altitude change), then the Hold Area Protect element Is invoked.
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ROUTINE Sparse Cell Generator;

DComponent of Grid chain Generator#
PARAMETERS SubjectFlId IN, TStart IN, T_Horizon IN;
REFER TO GLOBAL TRAJECTORIES IN;
DEFINE CONSTANTS

Flag Flag set to 1 indicates that StraightLineGenerator
is called from this routine to produce the nominal
trajectory;

DEFINE VARIABLES
Subject_Fl Id Flight identifier of the subject aircraft
T Start Starting time for sparse cell generator

#This is set to the present time for new flight plans and #
#resynchronization, to the time point of the alternate#
#trajectory for a trial probe, and to the old time horizon#
#minus one time cell for a horizon update#

T Horizon Time horizon
Time(*) The time values of the trajectory cusps

ordered by time
Cell Line Parameters(6) Pass through vehicle for parameters from

DetermineIndependentVariable to

Straight_Line Generator (includes xyt
starting cellnumbers and slopes)

X(*) The x values of the trajectory cusps

ordered by the time of the cusps
Y(*) The y values of the trajectory cusps

ordered by the time of the cusps
Z(5) Altitudes ordered by the time of the cusp

Cusp_Type(*) The cusp types of the trajectory cusps
ordered by the time of the cusps

MCount The number of cells traversed by the
segment

N Beg Starting value for maneuver envelope loop

N End Ending value for maneuver envelope loop
_-Count A count of trajectory records

N Index to loop on cusps;
DEFINE TABLES

REGULARCELLS Table containing information on cells occupied
by the regular segments

time The nominal time at which the cell was
occupied

node-id The cell number;

FIGURE 4-2
SPARSE CELL GENERATOR
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SELECT FIELDS time, x, y, z, cusp_type
FROM TRAJECTORIES (TJ)
INTO Time, X, Y, Z, CuspType
WHERE TJ.flid Mg SubjectFl Id AND (TJ.time GT TStart AND

TJ.time LT T Horizon)
ORDERED BY TRAJCTORIES.time
RETURN COUNT (NCount);

N Beg N Count;
N -hd 

N o t

FOR N 1 1 TO N Count - 1;
#determine if any portion of the segment is within the time#

#bound of the probe#
IF Time(N+l) GT T Start AND Time(N) LT T Horizon
TEN #Find regular segmein-t-
-7determine direction in which motion is most rapid#

CALL DetermineIndependentVariable (Time(N+1) IN,
X(N+1) IN, Y(N+l) IN, Time(N) IN, X(N) IN, Y(N) IN,
Cell Line Parameters OUT, N_Count OUT);
#generate cells for regular segmentT

CALL Straight Line Generator (Time(N+l) IN, Z(N+l) IN,
Time(N) IN7 Z(N IN, Subject Fl Id IN7,Flag IN, -
Cell Line Parameters IN, N_Count IN, REGULARCELLS OUT);

N Beg -- HIN(N, N Beg);
N-nd - MA(N, NEnd);

FOR N -NBeg TO N End;# Loop for maneuver envelopes#
IF Cusp TypeN)- 'Vertical maneuver'

-- Tadd altitude range to cells for vertical maneuvers#
CALL Vertical Protect (Time(N) IN, SubjectFlId IN,

REGULAR, CES IN);
IF (CuspTypeS) -Q 'Hold') OR (Cusp Type(N) EQ

'Vertical hold')
THEN
-- add additional cells to account for boundary of hold#

CALL Hold AreaProtect (Time(N) IN, SubjectFlId IN);
END Sparse ll_ enerator;

FIGURE 4-2
SPARSE CELL GENERATOR (Concluded)
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Determine Independent Variable

The element Determine Independent Variable determines in which
dimension the trajectory is changing most rapidly. The
variable or axis corresponding to this dimension is called the
indepeudeut variable or independent axis. The f ollowing
discussion describes the role of Independent variables inS finding the cells which are occupied in the sparse sense.

It already has been noted In Section 2.1.7 that penetration of
a cell does not imply that the cell will be declared occupied.
Operationally, Section 3.3.1.1, The Sparse Grid Chain, defines
a cell to be occupied if a line traversing it occupies more
than one octant of the (three-dimensional) cell (or quadrant of

H a cell in the two-dimensional example of Figure 3-2). How then
is this operational condition to be implemented algorithmical-Kly? This volume does not attempt an explanation of the
mathematics; instead, Illustrative examples are given of how
the correct grid chain is generated by using the correct
independent variable, but not by using the incorrect
independent variable.

Figure 4-3 shows a straight line transversing a two dimensional
grid where x is the independent variable. Using the "more than
one quadrant" criterion, the cells having solid circles should
be identified while cells penetrated for just one quadrant
(open circles) should not. Each vertical "column" of cells
along the x-axis is considered in turn. The y-coordinate is
computed for the point on the segment whose x-coordinate (the
independent variable) is the center of the current column of
cells. The cell containing the resulting y value is marked
occupied. Exactly one cell will be marked occupied for each
column of cells. For each horizontal "row" of cells (along the
non-independent y-axis), more than one cell may be marked
occupied.

Figure 4-4 shows a second straight line to which the "more than
one quadrant" criterion has been applied. Cells marked with
solid circles, both starred and plain, would be marked
occupied. Applying the procedure as described above (with x
chosen as the independent variable) will produce only the
starred cells. The resultant grid chain (if passed as is--with
gaps--to the Coarse and Fine Filters after applying the simple
buffering scheme described in Section 4.1.2) will not provide
reliable separation assurance.
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FIGURE 4-3
CELL OCCUPANCIES USING CORRECT INDEPENDENT AXIS
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LEGEND:

Occupied cell based on improper choice of
independent axis

0 Cells needed to complete sparse grid chain

FIGURE 4-4
CELL OCCUPANCIES USING INCORRECT INDEPENDENT AXIS
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HE77,
A solution to this problem is to interchange the roles of x and
y (and of "columns" and "rows" of cells) to make y the indepen-
dent variable. Thus, in Figure 4-4, values of y at the center
of a row's cells are input to the equation of the line and the
resultant value of x determines which cell is marked occupied.
This change in independent variable must take place when the
net change in y exceeds the net change in x; that is, when the

- .. slope exceeds one.

The scheme is readily extended to three dimensions as is done
in Determine Independent Variable. The PDL for this element is
given ir Figure 4-5. First, the coordinates of the beginning
cusp of the current segment are transformed to cell
coordinates. This is a linear transformation, accomplished by
dividing the geographic or time coordinates by the cell size.

.. ,'Then an offset is added such that the integer part of the cell
coordinate at the lower bound of the cell corresponds to the
cell's grid number along that axis.

The length of the segment, projected along each cell coordinate
axis, is computed and expressed in cell units. The absolute
magnitude of these lengths (called extents) are then compared
to one another and the axis associated with the greatest extent
becomes the independent variable.

Finally, H_ Count, the number of grid divisions traversed by the
independent variable, is computed, as well as the slopes of the
dependent variable with respect to the independent variable.
The cell coordinates of the segment starting point, the slopes
for each of the three coordinates, and the number of grid
divisions traversed by the independent variable are returned to

'.4 the Sparse Cell Generator for use by the element Straight Line
Generator.

The PDL representation of this element is given in Figure 4-6.

Straight Line Generator

Straight Line Generator uses the output developed by the
element Determine Independent Variable. In addition, Straight
Line Generator uses the time coordinates for both nodes (which
serve as keys for the end points of the current segment), the
beginning and ending altitude for the segment, and a flag value
indicating whether the Straight Line Generator is being used to

.5.. service a regular segment or a holding pattern maneuver
envelope.
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ROUTINE Determine IndependentVariable;
PARAMETERS T End IN, XEnd IN, YEnd IN, TBeg IN, XBeg IN, YBeg

IN, T Beg-Cell OUT, X BegC ell OUTY BegCell OUT, TSlope OUT,
'_Slope OUT, Y _TIe OUT,

REFER TO SHARED LOCAL T Cell Dimension IN, HCell Dimension IN,
V T_Offset IN, XOffset IN, 'Y_Offset IN;

DEFINE VARIABLES
T End Ending value for time
X End Ending value for x
YEnd Ending value for y
TBeg Beginning value for time
XBeg Beginning value for x
YBeg Beginning value for y
Teg.Cell Beginning value of time expressed in cell

coordinates
YBegCell Beginning value of y expressed in cell

coordinates
X_ BegCell Beginning value of y expressed in cell

coordinates
T Extent Difference between beginning and ending values

of time expressed in cell coordinates
Y Extent Difference between beginning and ending values

of y expressed in cell coordinates
X Extent Difference between beginning and ending values

of x expressed in cell coordinates
M Extent Maximum extent
H-Count Number of cells traversed by the segment
T Slope Change in time per unit change in independent

variable
Y.Slope Change in y per unit change in independent

variable

XSlope Change in x per unit change in independent
variable;

- .FIGURE 4-5
DETERMINEINDEPENDENTVARIABLE
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#Cmuesatn el.oriae u d o unieyt

#andpuensaing cel coordinates u ontqunieyt
T Exet( Beg - T-Eg/T Cell Dimension TOf;
YFxe YBeg l - Y /H Cell Dimensionff;
X Etent - X_-Beg - d/i_ 7Dimensionff;

#Compute etecont as thell difernce ina begisn# elcoriae
C andSEnd c ell coorentdinaste idpnetaibe
T EtNt (Tie t GE T B( Ed/CElDiensio N; AST xet

.5 Y~~xtent - (Y-e - Ent;HCl Dmnin
X -xte nt - X ffeg Be X~d/Cel)-CIMensind/ elDieso

WHEN (ANS(T Extent) GE ABS(X Extent)) THN(BTExet

NExtent T Extent;
NCount -CIL(T BegCel.1) - CEIL( End/TCellDimension +

T Of fseiT
OTERIS(Extn)G B xet)TE

MExtent- X Extent;
NCount -CEIL(Yegeli) - CEIL(Y End/HCellDimension +

X OffseiYTF- -

ftompute slopes of each variable with respect to independent#
#variable#

T Slope - T Extent/NExtent;
Y-Slope - Y Extent/NExtent;
XLSlope - X Extent/NExtent;

END Determine Independent Variable;

- 5, FIGURE 4-5
%S. DETERMINEINDEPENDENT VARIABLE. (Concluded)
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ROUTINE Straight_LineGenerator;
PARAMETERS T Exit IN, Z_End IN, TEtry IN, ZBeg IN, SubJFlId IN,

T_Beg Cell IN, Flag IN, T _Beg_ell IN, X Beg_ell IN, Y Beg-Cell
IN, T_Slope TN, XSlope IN, Y_Slope IN, H_Count IN, REGULAR CELLS

REFE TO GLOBAL SPARSE CELLS INOUT;
REFER TO SHARED LOCAL T CellDimension IN, T_Offset IN;
DEFINE VARIABLES

T_Entry Entry time for current segment
TExit Exit time for current segment
Z End Ending value for altitude
Z_Beg Beginning value for altitude
Flag Set to 1 when routine is called to find regular

segment, 0 otherwise
* T_BegCell Beginning value of time expressed in cell
*, coordinates

YBe&Cell Beginning value of y expressed in cell coordinates
XBeg Cell Beginning value of % expressed in cell coordinates
T-Slope Change in time per unit change in Independent

variable
YSlope Change in y per unit change in Independent

variable
X.Slope Change in x per unit change in independent

variable
SubjectFl_Id The flight id of the current subject
T Cell Time expressed in cell coordinates
Y Cell Y expressed in cell coordinates
ICel X expressed in cell coordinates
Te .T Time at which the regular segment passes through

center of cell
Z Up Altitude of regular segment at center of cell
Z-Down Altitude of regular segment at center of cell
Temp Node Temporary node id
M Count Number of cells traversed by segment
W- Counting index;

DEFINE TABLES
REGULAR CELLS Information on cells occupied by regular segment

time- Time for cell
node id Cell number;

FIGURE 4-6
STRAIGHTLINE GENERATOR
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# Loop through cells along independent variable axis #
FOR M 0 TO MCount;

T Cell -CEIL(T Beg Ccli + T Slope*M - 0.5);
Y-Cell - CEIL(Y Beg_.Pell + YSlope*M - 0.5);
X-CeUl - CUEIL(X Beg_CPell + XSlope*H - 0.5);
*Convert the cell1 grid coordinates to a Node number#
CALL Encode(TCELL IN, Y_ Cel IN, XCell IN, Temp Node OUT);
TempT - (TCell - TOffset - 0.5)*TCellDi1mension;
Z Up - Z_Beg;
Z Down -Z End;
I7F (ZEnd NE ZBeg) AND (Flag ~q1) #altitude is changing and #

*doing a regular segment#
THEN

Tinterpolate to find altitude#
Z UP - ZBeg + (Temp_T - TBeg)*(ZEnd - ZBeg)/

(TEnd - T Beg);
Z Down - Z Up;,

IF COUNT((SPARSECELLS.tree node _id EQ Temp Node) AND
(SPARSECELIS.fl id SubjectFlId)) NE 0

THEN
UPDATE IN SPARSE CELLS (min _z - MIN(min z, ZDown),

max z - 14AX(mix z, Z Up), ent-ry time-- HIN(entry time,
TB effiit tiue - R&X(exit time, TEnUT

WHERE SPARSECELIS. tree node id M TempNode AND
SPARSE CELLS.fl id _% SubjectFl Id;

ELSE
INSERT INTO SPARSE CELLS (fl 1id - SubjectFlId,

tre nde d Tepode, min z - ZDown, max z - Z;_Up,
entry time - T Beg, exit time - T End);

IF Flag !91#routine called to produce regular segment#
EN

INSERT INTO REGULARCELLS (time -TempT, node id-
Temp Node);

END Straight LineGenerator;

FIGURE 4-6
STRAIGHT LINE GENERATOR (Concluded)
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Straight Line Generator then uses this information to compute
cell occupancy. It does this by iterating over unit increments
of the independent variable. Using the equation for a straight
line, the position of the two dependent variables is computed
as a formation of the independent variable and expressed in
cell coordinates. (The independent variable is also
recomputed, but since its slope is one, its computation returns
the original value.) All of the coordinates are then truncated
to integer values (using the CRIL function) which gives the
grid coordinates of each occupied cell.

For purposes of cell identification and future manipulations
via recursive algorithms, it Is convenient to merge the three
cell coordinates into a single identifier called the tree node
identifier or node identifier for short. This Is done by the
utility element, Encode. There are many ways of encoding the
cell coordinates Into a single identifier. One such encoding
method Is particularly natural and is presented as an example.
It helps illustrate the concepts involved and the close
relationships existing between the grid cells and blocks a*wti
the corresponding tree nodes.

Figure 2-4 shows a trajectory crossing an 8 by 8 grid and the
tree structure that applies to that trajectory. Each leaf Is
characterized by a three-digit base four number. This version
of Encode takes two coordinates and converts them to the leaf
number.

* Figure 4-7 illustrates the conversion for a particular cell
(labeled 022) In Figure 2-4 (the leftmost cell of the
trajectory). The coordinates of that cell are x - 0 (f irst
column) and y - 3 (fourth row from bottom). The binary
expressions of these coordinates (x-000, roll1) are shown at
the top of Figure 4-7. Shuffling the bits as shown results in
the tree node identifier, 022. This is Indeed an occupied
leaf-level node as can be seen in Figure 2-4.

In this same loop, Straight Line Generator derives the
effective time (Temp_T) of each cell. This is the time at
which the independent variable traverses the center of the
cell. It is used for two purposes:

9 computing the altitude using linear interpolation
methods

0 incorporating effective time for regular segments in a
table called REGULARCELLS. (This is needed to

'C...process vertical maneuver envelopes)
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CELL IN GRID
ROW 3

COLUMN 0
IN FIGURE 2-4

3 0

BINARY DIGITS OF BINARY DIGITS OF
y-COORDINATE x-COORDINATE

BINARY DIGITS OF BINARY DIGITS OF BINARY DIGITS OF

0 2 2

(LEVEL-i BRANCH IS (LEVEL-2 BRANCH IS (LEVEL-3 BRANCH IS
LOWER LEFT BLOCK) UPPER LEFT BLOCK) UPPER LEFT CELL)

NODE 022 IN TREE

IN FIGURE 2-4

FIGURE 4-7
AN EXAMPLE FOR A METHOD OF CONVERTING FROM GRID CELL

COORDINATES TO A TREE NODE IDENTIFIER
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Finally, the outputs of the Straight Line Generator element as
called from Sparse Cell Generator are computed as follow: if
the cell is new, then a record is inserted into SPARSE CElS
including the following fields

* " The subject flight identifier

" The minimum and maximum altitude (which have the same
* value for regular segments)

* " The entry and exit time for the cell

If the cell exists from previous computations as indicated by a
duplication of the flight Identifier and the node identifier,
then the other fields are updated as follows:

" The minium and maximum altitudes are the -mmum and
maximum of the old and current altitudes

" The entry time is the mniMmum of current segment
beginning time or previous entry time

" The exit time Is the =maium of the current segment
ending time or the previous exit time

The Determine independent Variable and Straight Line Generator
processing has been applied to the entire trajectory shown in
Figure 3-2, and the results are partially shown in Table 4-1.
From left to right, the table show, for each cell, the
following:

" The cell coordinates

* The corresponding Identifiers (using the scheme
Illustrated in Figure 4-7)

" The entry time and exit time

S." Additional comments

- Vertical Protect

if the current segment being processed by the Sparse Cell
Generator Is associated with a vertical maneuver, then the
minimum and maximum altitudes are not Identical. The element
Vertical Protect determines their values. The PDL
representation of this element is shown In Figure 4-8.
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TABLE 4-1
EXAMPLE SPARSE CELL TABLE

CELL DATA
Cell Node Entry Exit Coment

Coordinates ID Time Time

! X

2 0 020 tI  t2  Entry Into planning
region at t,

3 1 023 tI  t2

3 2 032 t t

4 3 211 t I  t 3  Cusp at t 2

3 4 122 t2  t3

2 5 121 t2  t3

1 6 112 t2  t3

0 7 111 t2  t3  Exit from planning

region at t 3

4-18
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ROUTINE Vertical Protect;
PARAMETES BegTime IN, Subject FlId IN, Regular Cells IN;
REFER TO GLOBAL MANEUVER ENVELOPES IN, SPARSECELLS INOUT;
DEFINE VARIALES

Subject FlId The flight id of the current subject
Beg_Time The time at first cusp in the current segment
Zru Current altitude
Tru Latest time aircraft can leave current altitude

Zlu Current altitude
Tlu Earliest time aircraft can leave current altitude
Zld Target altitude
Tld Earliest time aircraft can arrive at target

altitude
Zrd Target altitude
Trd Latest time aircraft can arrive at target altitude
SlopeL Left slope for vertical maneuver
SlopeR Right slope for vertical maneuver
TempT Temporary time variable
Temp Node Temporary node ID
Z Entry Altitude at entry to maneuver envelope

Z Exit Altitude at exit from maneuver envelope
DEFINE TABLE

REGULAR CELLS Like REGULAR CELLS in SPARSE CELL GENERATOR

FIGURE 4-8

VERTICAL PROTECT

a
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SELECT FIELDS rd z, rd t, ru z, rut, luz, lu t, ld z, ld-t
FROM M ANE --ENVELOPE (E)
INTO Zrd, Trd, Zru, Tru, Zlu, Tlu, Zld, Tld
WHERE ME.f id ._ Subject Fl Id AND ME.tiae M2 BegTime;
Slope_R - (Zru - Zrd)/(Tru --TrdYF,
SlopeL - (Zlu - Zld)/(Tlu - Tld);
#Compute altitudes for the upper and lower limits of maneuver#

#envelope#
REPEAT FOR EACH REGULAR CELLS RECORD

WHERE REGULAR CELLS.ime GTY7j
MND REGULAR CELLS *time LT Trd;

Temp_T - REGULAR CELLS. time;
Z Entry- Zlu;
Z Exit Zrd;
fI1 Temp T GT Tru
THEN #the-within bounds of maneuver envelope, interpolate#
7to find exit time#
Z Exit - Z Exit + (Tempt - Tru)*SlopeR;

IF TempT LT Tru
THEN #time-ithin bounds of maneuver envelope, interpolate#
-- to find entry time#

.4 Z_Entry - Z Entry + (Tempt - Tld)*SlopeL;

Temp_Node - REGULAR CELLS.node;
UPDATE IN SPARSE CELLS (min z - MIN(min z, ZEntry, Z Ezit),

max z - MAX(mxz, ZEntry, z-git))- -
WH.RE SPARSE CELLS.fl id _M Subject F1 Id AND

"1 SPARSE CELS.tree node id E TempNode;
END VerticalProtect;

FIGURE 4-8

VERTICAL PROTECT (Concluded)
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The two inputs, the time of the cusp and the subject trajectory
identifier, are used to select the appropriate record from
MANEVE ENVELOPES. Only the z and t f ields are extracted.
The x and y fields are not used. (Indeed, they mnay have no
physical meaning. Trajectory Estimation computes the four
vertices of a cusp's maneuver envelope before considering later
cusps. A later cusp may nevertheless occur prior to some ofp the vertices. If such a cusp represents a turn, the x and y
coordinates of those vertices will not reflect the turn. The z
and t coordinates, however, are valid.)

*Altitudes for the upper and lower limits of the maneuver
envelope are computed by linear interpolation. This is done by
looping on all cells occupied by the segment (stored in the
local table REGULAR-CELLS) that fall within the timeframe of
the maneuver. Then the node identifier f or each regular cell
is used to find the applicable SPARSE CELLS record that needs

* to be updated.

Updating the altitude range in the table SPARSECELLS is
effected as follows: The maximum altitude is the maximum of
(a) the old maximum altitude, Wb the upstream slope or "left"
side of the envelope as applicable (see Figure 2-8), or (c) the
downstream slope or "right" side of the envelope as appli-
cable. Similarly the minimum slope Is the mlinimm of the old
minimum or of (b) or Wc above.

Hold Area Protect

If the current segment being processed by the Sparse Cell
Generator Is a hold, then the volume in (xy,t) defined by the
holding pattern must be protected. This Is done by the element
Hold Area Protect.* The PDL representation for this element is

2 shown In Figure 4-9.

Two Inputs, the subject's flight Identifier and the time of the
cusp, are used to select the appropriate record from the global
table MANEUVR ENVELOPES.

The outside loop In Hold Area Protect generates a complete set
of hold cells In (x,y) space for each time unit (expressed in
cell coordinates) for which the hold is planned. The inside
loop creates a set of straight line segments parallel to the
right side of the hold, and separated by no more than one
horizontal cell width, as shown In Figure 4-10. Hold Area
Protect generates the end points of these lines and uses the
Determine Independent Variable and the Straight Line Generator
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ROUTINE Hold Area Protect;
PARAMETERS Time IN, Subject Fl Id IN;
REFER TO GLOBAL MANEUVER ENVELOPES IN;
REFE TO SHARED LOCAL T Dell Dimension IN, HCellDimension IN,

T Offset IN;
DEFINE CONSTANTS

Flag Set equal to 0 To indicate that StraightLine
Generator is called from this routine to
update the table of sparse cells only;

DEFINE VARIABLES
Time Tim key of the hold maneuver envelope

A Subject Fl Id Current subject flight Identifier
Xrd,YrdZrZTrd Coordinates of the right downstream vertex
Xru,Yru, Zru,Tru Coordinates of the right upstream vertex

A Xlu,Ylu,Zlu,Tlu Coordinates of the left upstream vertex
Xld,Yld,Zld,Tld Coordinates of the left downstream vertex
T Beg Start time of hold
TEnd End time of hold
Z Max Highest altitude of hold
Z Min Lowest altitude of hold
Cell Line Pass through vehicle for parameters

A.. Parameters(6)
M Count Number of cells traversed by the segment
14-Extent Number of time cells for time cell loop
X-Extent Length of x component of downstream side of

hold
Y_Extent Distance of y component of downstream side

of hold
N Extent Number of parallel straight line segments

needed to cover hold
X Delta X increment for locations and points of

parallel lines
YDelta Y increment for locations and points of

parallel lines
T_Temp Current effective time for cells in hold

maneuver
M Loop index
N Loop index
XEnd Final x coordinate for line covering hold
X Beg Starting x coordinate for line covering hold
Y End Final y coordinate for line covering hold
f _Beg Starting y coordinate for line covering hold;

DEFINE TABLES
DUMNY Dummy table defined like REGULAR CELLS

FIGURE 4-9
SHOLDAREAPROTECT
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SELECT FIELDS rightdownstream vertex, right upstream vertex,
left upstream vertex, left downstream vertex
FROM MANEUVERENVELOPES (M)
INTO0 Xrd, Yrd, Zrd, Trd, Xru, Yru, Zru, Tru,

Xlu, Ylu, Zlu, Tlu, Xld, Yld, Zld, Tld
WHERE ME.fl id Eq Subject Fl id AND ME.time Eq Time;

#Fin-d -tart anir end times ofmhord#
T Beg a MIN(Trd, Tru, Tlu, Tld);
T End - W(Trd, Tru, Tlu, Tld);
#lind highest and lowest altitudes in. hold#
Z Max - MAX(Zrd, Zru, Zlu, Zld);
Z--in -N(Zrd, Zru, Zlu, Zld);
ffind nu Ger of cells corresponding to the hold duration#
M Extent - CEIL(T Beg/T Cell Dimension + T Offset) -

CEIM¢T E- Ce1 DiWensi7on + T Offset);
X 1tentl= Xrd- Xld;"
Y Extent - Yrd - Yld;
lFind independent variable along downstream side and set N Extent#
#to twice the maximum number of cell sized steps along that side #
IF ABS(Y Extent) GE ABS(X Extent)

N Extent - 2 * CEIL(Y Extent/H Cell Dimension);
ELSE

N Extent - 2 * CEIL(X Extent/H Cell Dimension);
T TeEp - T eg;
#Find increments along downstream side for spacing of parallel#
hlines to cover hold #
X Delta - X Extent/N Extent;
Y-Delta - Y Extent/NExtent;
FOR M - 0 TO M Extent; #Step through the hold along the time axis#

T Temp - T Temp + T Cell Dimension;
FOR N - 0 TO NExtent; #Step along the downstream side#

XEnd -Xld + X Delta*N;
X Beg - X End - Xld + Xlu;
Y End - Yld + Y Delta*N;
Y-Beg - Y End - Yld + Ylu;
CALL Deteriane Independent Variable (T Temp IN, lEnd IN,

Y End IN, TTemp IN, XEnd IN, Y End IN, Cell Line
Parameters OUT, count ouT .. .

CALL StraightJine Generator-T_End IN, Z Min IN, TBeg IN,
Z Max IN, Subj_Fl Id IN, Flag IN, Cell Line Parameters
IN, mCount IN, D _4 OUT);

END HoldAreaProtect;

FIGURE 4-9
HOLDAREA PROTECT (Concluded)
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FIGURE 4-10
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elements to update or insert additional records In the global
table SPARSECELLS.

4.1.2 Buffer Cell Generator

4.1.2.1 Mission

The Buffer Cell Generator component of the Grid Chain Generator
outputs a shared local table of buffer cell. using the sparse
cells of the current subject. When these buffer cells are
compared to the sparse celis of any other trajectory,
violations of separation can be ruled out if no overlap
occurs. It is sufficient that buffer celis include sparse
cells and all nearest diagonal and orthogonal neighbors of the
sparse cells to achieve separation assurance.

In addition to buffering with respect to cells, Buffer Cell
Generator determines vertical separation minim and maxima for
each buffer cell. It allows the Identification of all
pertinent trajectory segments (used by the Fine Filter
subfunction of Flight Plan Conflict Probe).

4.1.2.2 Design Considerations and Component Environment

"I Input

The input to Buffer Celi Generator includes the globaltal
SPARSECELLS, the subject aircraft's flight identifier, the
currenti time, and the time horizon.

Output

The output Is the shared local table BUFFERCELLS. E ach buffer
cell, like each sparse cell, must have In its record the
information needed to determine whichb segments of the subject
trajectory are responsible for the occupancy of the cell.

4.1.2.3 Component Design Logic

The processing method of Buffer Cell Generator Is given by the
PDL in Figure 4-11. Its calling sequence is as follows.

IBuffer Cell Generator I
I Decode

S.,' I EncodeI
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ROUTINE Buffer Generator;
,Component of Cell Grid Chain Generator#
PARAMETERS T Present IN, T Horizon IN, Subject l'Id IN;
REFE TO GLOBAL SPARSECELLS IN;
REFER TO SHARED LOCAL BUFFER CELLS OUT;
DEFINE VARIABLES

TPresent Current time
T Horizon Current time horizon
Temp_Node A temporary value for a node ID
T Cell Time at center of sparse cell in quantized cell

coordinates
YCell Y point at center of sparse cell in quantized cell

coordinates
X Cell X point at center of sparse cell in quantized cell

coordinates
T Index for iteration on time
Y Index for iteration on horizontal y
X Index for Iteration on horizontal x;

FIGURE 4-U1
BUFFER CELL GENE W OR
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REPEAT FOIL EACH SPARSECELLS RECORD
pEnpfE SPARSE CELLS.fl id M Subject Fl Id;

Y-ode - 1ARSE CELS. tree node Td,--
CALL Decode (Teamp_Node IN, TCell OUT, YCell OUT, XCe1

FORT T Cell - 1 TO T Cell + 1;
IF (T UT T Present iAN T LE THorizon)
THEN

FOR Y - Y_Cell - 1 TO Y Cell + 1;
FOR X - X Cen -1 TO X Cel + 1;

CALLT Encode (T IN, Y IN, X IN, Temp Node OUT);
1&ck to see I'the '-ifferi'ell isalreadyin

#BUFFE CELLS. If it is, update its record.#
#Otherwie, create a record for it.J

IF (COUNT(BUFFI_CELLS.nodeId M Temp Node)) NE 0
THEN

UPDATE IN BUFFER CELLS
(NI z - MIN(mln z, SPARSE CELLS.min z),
max E - Wum _7, SPARSE _LLS. -mx_),
entry time - MIN(entry time, SPARSE
CELLS entryt5-), exittime - Na(exit
time, SPARSE CELLS. ext tm))
WHERE BUF CELLS.node id M Tmp Node;

ELSE
INSERT INTO BUFFIR CELLS (node id - Temp Node,

min z - SPARSE CELLS.nin z, mx z - SPARSE
CELLS.max z, entrytlm - SPARSE CELLS.
entry tim, exit time - SPARSE CELLS.ezit
time);-

END Buffer Cell Generator;

FIGURE 4-11

BUFFER CELL GENERATOR (Concluded)
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Buff er Cell Generator searches through the records of SPARSE
CELLS selecting out any record associated with the currenEt
subject f light identif ier. The (integer) Cell coordinates are
obtained using a utility routine called Decode, which performs
the inverse operation to Encode discussed In Section 4.1.1.3.
Then, each of the three cell dimensions are processed In nested
loops to create buffer cells at all positions situated within 1
cell coordinate of the sparse cell.* The nearest diagonal and
orthogonal neighbors of the sparse cell are thus selected as
buffer cells.

Then the various attributes of the sparse cell are transferred
to the buffer cells. If the buffer cell Is not represented in
BUFFER CELLS, the sparse cell attributes (minimum altitude,
maximui altitude, entry time and exit time) are transferred
directly to the buffer cell record along with the node
identifier returned from Encode.* If the buffer cell already
exists, It Is updated so that the buffer cell attributes have
the greatest necessary range. In this manner, the buffer cell
records, like the sparse cell records, provide vertical separa-
tion assurance and the time information required by the Coarse
Filter.

4.1.3 Grid To Tree Converter

4.1.3.1 Mission

The Grid To Tree Converter component of the Grid Chain
Generator uses applicable SPARSE CELLS and BUFFER CELLS records
to build the subject's sparse and buffer trees.

4.*1.*3.2 Design Consideration and Component Environment

Before entering the Grid To Tree Converter component, the
global SPARSE CELLS table and the (local) BUFFER CELLS table
have been comleted for the subject trajectory. ild To Tree
Converter takes the applicable node *identifiers of the sparse
and buffer cells and generates the necessary node-parent
relationships to establish the tree structure. This
facilitates the Coarse Filter's process of ruling out object
trajectories that are well separated in space or time from the
subject.

Input

*The inputs to Grid To Tree Converter include the SPARSE -CELLS
and BUFFER CELLS tables and the subject flight identifier.

4-28

-4r



4% The outputs are the shared local tables SPARSE TREE and BUFFER
TREE, which contain Information necessary for tree manipula-
tions.

4.1.3.3 Component Design Logic

The PDL representation of the Grid to Tree Converter is given
in Figure 4-12.

The Grid to Tree Converter component takes each record of the
SPARSECELLS table applicable to the subject and creates the
tree structure starting at the leaf level and working back to
the root.

All of the information needed for determining parentage Is
contained In the cell Identifier. This information Is
extracted using the utility Get Parent. Consider the example
of a coordinate -to -node Identifier mapping described' in Section
4.1.1.3 and illustrated in Figure 4-7. For this mapping, Get
Parent would drop the rightmost digit of a node identifier
(say, node 022 In Figure 2-4) to yield the node Identifier of
its parent (02).

Results, consisting of temporary node Identifiers and the
flight identifier from the sparse cells, are incorporated In
the SPARSE TREE and the BUFFER_1R11 tables.

4.2 Coarse Filter

The Coarse Filter component of Flight Plan Conflict Probe is
designed to reduce the number of object aircraft that need to
be analyzed by the Fine Filter for possible conflict with the

* subject aircraft. It accomplishes this task by Identifying the
aircraft that occupy the esm general region in space and tine
as the subject aircraft and eliminating all others from further
consideration. Specifically, the Coarse Filter Invokes a
recursive routine called Nominee Detection. Nominee Detection
eliminates, at every stage of the recursion, all those object
aircraft whose trajectories do not occupy any of the blocks
that contain subject aircraft buffer cells. The algorithm
Invokes itself to check each of the eight sub-blocks for
co-occupancy. It continues dividing co-occupied blocks and

C eliminating non-neighboring object aircraft until the cell
level of the grid is reached. Thereupon, any object aircraft
occupying a buffer cell of the subject aircraft Is tested for
an altitude separation violation with the subject aircraft for
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ROUTINE Grid ToTreeConverter;
lComponent of Grid Chain Generator#
PARAMETERS Subject Fl Id IN;
RIIRTLo iPA SPARSECELL IN, BUFFER CELLS IN;
REFER TO SHARED LOCAL SPARSETREE OUT. BUFFERThEE OUT, MAX_.LEVEL IN;
DEF I VARIABLES

TempN1ode Temporary storage of node id
* Temphild Temporary storage of child id

Level Temporary tree level counter;
REPEAT FOR EACH SPARSECELLS RECORD

WHERE SPARSE CELLS.fl id JM SubjectFlId;
TempChild 0 SPARSE CELLS.tree node id;
FOR Level - Max Level TOO0;

CALL GetParent (TempChild IN, Level IN, Temp_Node OUT);
INSERT INTO SPARSETREE (fl1 id - SPARSE CELLS.f lid,

node Id - TempNode, child id - Temp hhLd);
Temp Child - TempNode;

REPEAT FOR EACH BUFFER CELLS RECORD;
TempNode - -BUFFER CELLS .node id;
FOR Level - MaxLevel TO 0;TepNd

*ICALL Get Parent (Temp Child IN, Level IN, _ea __ OT)
MORT lIVrO BUFFERTM~ (node id -TempNode,

child id -TempChid);

Temp Child -Temp Node;
END GridToTieeConverter;

FIGURE 4-12
GRIDTOTREE CONVERTER
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these cells. This test is performed by invoking the element
Nominee Detection Altitude Test. Those object aircraft for
which this test indicates a violation of the vertical
separation criterion are identified as nominees. The nominees
are passed on to the Fine Filter where a more thorough analysis
Involving the segments of the conflicting aircraft is conducted.

Figure 2-3 shows the planning region grid and the eight
sub-blocks of each stage of this routine. As indicated in
Section 2.1.8, octal tree data structures are used to represent
the planning region blocks and cells occupied by the subject
and object aircraft.

Figure 4-13 illustrates the Coarse Filter organizational
hierarchy. Flight Plan Conflict Probe calls the Coarse Filter
which, in turn, invokes Nominee Detection, its single component.

4.2.1 Nominee Detection

4.2.1.1 Mssion

The purpose of this component of the Coarse Filter is to
identify all cells within the planning region's
three-dimensional (x,y,t) grid which are buffer cells of the
subject aircraft and are occupied by at least one object
aircraft. For each subject-object aircraft pair so identified,
an altitude check is performed to determine if the altitude
ranges (mininmum to maximum) of the aircraft over the cell are
such that the aircraft may violate the vertical separation
criterion. This test is performed by invoking the element
Nominee Detection Altitude Test. Those object aircraft that
are found to violate this criterion with the subject aircraft
are labeled nominees and are placed in the NOMINEES table and
passed to the Fine Filter for further processing.

4.2.1.2 Design Considerations and Component Environment

Input
I'. The Information supplied to the Nominee Detection algorithm

consists of parameters, global data, and shared local data.
The parameters consist of CurrentNodeId, Level, Test_Time
Begin, and Test Time End. The Current Node Id is used in the
recursion to idintify the node being processed (in preorder) at
a given level of the recursion. The parameter Level identifies
which level of recursion is currently being processed.
Test Time Begin and Test Time End are used to limit the scope
of te search. The alirithb will search only those blocks
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whose time interval overlaps with these test times. For
example, if the Coarse Filter is called because of a horizon
update with Test TimeBegin equal to the previous time horizon
and TestTimeEnd equal to the new time horizon, there is no
need to check blocks associated with times outside of this
interval.

The shared local tables and variables input into the algorithm
are the ALLOBJECT_TREE, BUFFER TREE, BUFFERCELLS, Max Level,
RealSubjectFl_ d, and TrialFlag. ALLOBJECT TREE and BUFFER
TREE are tables which define the structure of the trees. These
tables contain a record for each parent-child relationship in
the tree. When the preorder traversal reaches a record
including a leaf node (always as a child), the leaf (child)
identifier is used to reference the corresponding cell data in
BUFFER CELLS. This information is used to provide the
information on the subject aircraft segment in that cell to the
NOMINEES table. The global table SPARSE CELLS provides the
corresponding data for the leaf level of the ALLOBJECT TREE.
Max Level defines the maximum level of division used to reach
the leaf level. The variable Trial Flag is set to TRUE if the
call to Nominee Detection is due to a trial probe and to FALSE
otherwise. In case of a trial probe, the variable Real
Subject_FlId contains the flight identifier of the flighbt
being probeao This is used to avoid detecting potential
conflicts of the trial trajectory and the actual trajectory of
the flight being trial probed. (Real SubjectFlightId is not
used for a trajectory update or a horizon update.) Finally the
global variable Current Time is used to limit the search to

' cells that correspond to those portions of trajectories that
*' occur in the future.

output

The output of the Nominee Detection algorithm is the shared
local NOMINEES table which contains the following information
for each subject buffer cell occupied by an object (nominee):

1. the flight identifier of the nominee aircraft

2. the node identifier of the airspace cell where the
co-occupancy occurs

3. the subject entry time and subject exit time, which
specify the t coordinates of two cusps on the
subject's trajectory: a) the earlier cusp on the
earliest segment which causes the cell to be declared
occupied by the subject and b) the later cusp on the
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latest segment which causes the cell to be declared
occupied by the subject

4. the nominee entry time and nominee exit time, which
specify the t coordinates of two cusps along the
nominee's trajectory, defined as in 3a and 3b above

4.2.1.3 Component Design Logic

Nominee Detection Is a recursive algorithm which uses
preordering to traverse (in parallel) those branches which
occur in both BUFFER TREE (which reflects the trajectory of the
subject aircraft) and ALLOBJECT TREE (which reflects the
trajectories of all of the object-s). A description of tree
traversal methods is given in Appendix C. Each call to Nominee
Detection considers a node that occurs in both trees, which is
input as Current Node Id. On the first call to Nominee
Detection, this node ii the root of both trees. The Current

- Node Id is used as a key to locate records corresponding to its
children in both trees. Only children common to both trees are
considered.

Two tine tests are performed. First a check to see if the time
intervals associated with the current child block exceeds
Current Time. If so, testing for this child ends, since the
aircraft has already passed this point in time. Next, the
Test Time Begin and Test Time End are tested against the given
block's time intervals to-see if they overlap.

For each pair of children satisfying the above conditions,
Nominee Detection calls itself with the child id of the
subject's tree as the new CurrentNodeId. At every stage of
the recursion, the algorithm also checks to see if the cell
level (i.e., Max Level) has been reached. If it has been
reached, then thealgorithm locates and retrieves the segment
data for the subject in BUFFER CELLS. Included in this data
are the minimum and maximum altitudes attained for the
segment. Next, the algorithm locates, iteratively, each
SPARSE CELLS record of every object aircraft co-occupied with
the subject in the cell and retrieves the corresponding segment

- data for that aircraft. For the current object aircraft, a
comparison is made of its altitude range in the cell with that
of the subject aircraft. If the vertical separation between
the aircraft is less than that required by the vertical
separation criterion, then the object aircraft is labeled a
nominee and the NOMINEES table is updated with the appropriate
data. The test for vertical separation is performed by the
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Nominee Detection Altitude Check element. Figure 4-14 gives
the PDL for the Nominee Detection component.

Nominee Detection Altitude Check

The Nominee Detection Altitude Check element performs a test to
determine whether or not the subject and object (candidate for
a nominee) segments violate the vertical separation criterion
Vert Sep. The algorithm first determines whether or not the
maximum altitude attained by either aircraft segment is larger
than 29,000 feet. If so, the vertical separation criterion
Vert Sep is set equal to the global parameter Sepz Hi;
otherwise, it is set equal to SepzL.

Finally, the algorithm determines if the 'vertical distance
between the segments is within VertSep. If It is, the status
is set to a "nominee" status; otherwise, it is set to a "no
nominee" status.

Figure 4-15 is a PDL representation of the Nominee Detection
Altitude Check element.

4.3 Fine Filter

The Fine Filter component of Flight Plan Conflict Probe
identifies the encounters of a particular subject aircraft from
the data in the aircraft's NOMINEES Table. Unlike the Coarse
Filter, which is essentially a search and copy subfunction, the
Fine Filter involves detailed mathematical analyses conducted
on aircraft segments. (The word "segment" in the following
paragraphs will be used to denote either a regular segment or a
cusp pair representing entry and exit points of a holding
pattern or vertical maneuver.)

The first task of the Fine Filter algorithm is to create a list
* of subject-nominee segment pairs consisting of those subject

and nominee segments which are associated with a co-occupied
cell Identified in NOMINEES. Each such pair is compared to
those segment pairs previously analyzed by the Fine Filter for
possible repetition. The objective of this test is to assure

q. - that no segment pair undergoes the same mathematical analysis
more than once. If the segment pair has not yet been
processed, the segments are tested for possible overlap in time
by the Time Check component. Those segments that overlap are
checked by the Altitude Check component for possible violation
of the vertical separation criterion. If violation is
detected, the segments are tested by the Horizontal Check
component, within their common time interval, to determine
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ROUTINE NomineeDetection;
PARAMETERS CurrentNodeId IN, Level IN, Test TimeLBgin IN, Test-

TimehEd IN;
REFER TO SHARED LOCAL ALLOBJECTTREE IN, BUFFER MEE IN, BUFFER

CELLS IN, NOMINEES OUT, Max Level IN, RealSubjectFlId IN,
TrialFlag IN;

REFER TO GLOBML SPARSECELLS IN, CURRENTTIME IN;

CurrentNodeId Identifier of the current root of the
subtree being traversed

Level Current level of the root of the subtree in
the parent tree

TeatTimeBegin Time at which testing for co-occupancy begins
Test Tiind Time at which testing for co-occupancy ends
SubjectMin _Z The lowest altitude through which this

flight plan trajectory passes in this cell
SubjectMaxZ The highest altitude through which this

flight plan trajectory passes in this cell
Subject EtryTime Cusp which precedes entry into this cell
SubjectExitTime Cusp which follows exit from this cell
Status An indicator used to specify whether a given

object aircraft is or is not a nominee;

FIGURE 4-14
NOMINEE DETECTION
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IF Level LT Max Level
THEN

REPEAT FOR EACH BUFFER TREE RECORD
#for each child of a node, a record exists with node id as#

#first field and child Id as second field#
WHERE BUFFER TREE.node Id-EQ Current Node Id;
IT-fe time Interval a sociated withthe Current.Node Id

is in the interval (Test Time_BeginTestTime End)

AND CURRENT TIME.time does not exceed this time interval
THEN-Ycheck for matching child block in the ALLOBJECT tree#

Tif match then blocks are co-occupied#
IF COUNT(ALLOUJECT TREE.nodeid E CurrentNode Id AND

ALLOBJECT TREE.chirdid E2 BUFFER TREE. childidT NE
THEN #child was found, check next level in pre-order,#

7 to find which cells are co-occupied with the subject#
CALL Nominee Detection(BUFFER TREE.child id IN, Level+l

ES h IN, Test Time Begin IN, Test Time End IN);--
ELSE #at the leil level-(cell level]-of both trees,#

- deteruine all objects in the cell to be considered nominees;#
#get altitudes and segments in this cell for the subject#

SELECT FIELDS min z, maxz, entry time, exit time
INTO Subject )n Z, Subject Max Z, SubjectEntry_Time,

Subject Exit Time
FROM BUFF& CELLS
WHERE BUFFER CELLS.tree node id Current Node Id;

REPEAT FOR EACH SPARSECELLS RECORD Ifor each co-occupied object#
WHERE SPARSE CELLS.tree node id EQ Current Node Id;
ri -this Is a trial pro~e, ignore the real-subject#
IF ((Trial Flag R! FALSE) OR (Trial Flag R TRUE AND
-- SPARSE CELLS.F1 Id NE FWal Subject F1lId) '
THEN #tes e for altitudei-violaTion between aircraft#i

CALL NomineeDetection Altitude Check (Subject MinZ,
Subject Max_Z, SPARSECELLS.ain z, SPARSE CELLS.max.z,
Status); -

IF Status - 'nominee'
THEN fthis object is nominee, add segments for the subject#

" and this object to the Nominee table#
INSERT INTO NOMINEES

(F1 id - SPARSE CELLS.F1 id, node.id - SPARSE
CELIS.treenode-id, subjectentry time - Subject
Entry Time, subject exit time - SubjectExit_Time,
nominee entrytime SPARSE CELLS.entry time,
nominee-exit-time - SPARSE ELLS.exit time);

END NomineeDetection;

FIGURE 4-14 '
NOMINEE DETECTION (Concluded)
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ROUTINE NomineeDetectionAltitude Check;
fthis routine determines if the required vertical separationt

fdistance is maintained between two aircraft in a given cell#
PARAMETES Subject Min Z IN, Subject Max Z IN, ObjectMinZ IN,

Object Max Z IN, Status OUT;
RFE TO GLOML Sep Hi IN, Sepz_ o IN;~~DEFINE 7ARIALE

Vert Sep Vertical separation criterion
- Subject Min Z The lowest altitude through which subject's flight

plan trajectory passes in this cell

Subject Max Z The maximum altitude through which subject's
flight plan trajectory passes in this cell

ObjectMin Z The lowest altitude through which object's flight
plan trajectory passes in this cell

ObjectMaxZ The maximum altitude through which object's flight-
plan trajectory passes in this cell

Status An indicator used to specify whether a given object
aircraft is or is not a nominee;

9. Edetermine required vertical separation#
#If the maximum altitude of e'ther aircraft exceeds the altitude#

#at which the minimum separation requirement changes, set the#
Emaximum distance#

IF MAX (Subject Kin Z, Subject Max Z, Object Min Z, Object Max Z)
M"-29000 feel -

T]HB
Vert Sep - Sep..Hi;

ELSE
'ert Sep - SepzLo;

Edetersine if the vertical distance between segments in the cell#
are in violation#

IF (MAX (Subject Kin Z, Object Kin Z) - KIN (SubjectMaxZ,
Object KinZ)) LT Vert Sep

THEN

" tatus - 'nominee';
ELSE

Status - 'no nominee';
END Nominee Detection AltitudeCheck;

FIGURE 4-15
NOMINEE DETECTION ALTITUDE TEST
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whether or not the horizontal separation of the aircraft is
less than the advisory separation criterion (Advisory Seph)

and, if so, whether or not it is also less than the priority
separation criterion (Priority Seph). The component

distinguishes between regular segments and segments associated
with a holding pattern or vertical maneuver in its calculation
of the distance separating the two aircraft. If a violation of
the advisory separation criterion is detected, an entry is made
in the ENCOUNTERS Table by the Encounter List Builder
describing details of the event. This table includes encounter
data for all of the aircraft in the planning region.

Once all segment pairs associated with a co-occupied cell have
been tested, the Fine Filter repeats the entire process for the
next co=occupled cell, etc., until all cells are processed.

Figure 4-16 illustrates the Fine Filter organizational
hierarchy. Flight Plan Conflict Probe invokes the Fine Filter
after the Coarse Filter, whereupon the Fine Filter calls its
various components in tandem.

Figure 4-17 contains a glossary of the local variables and
tables which are common to at least two components of the Fine
Filter. It should be used as a supplement to the PDL
descriptions of the various algorithms provided in the figures
of Section 4.3.

Figure 4-18 Is a PDL presentation of the Fine Filter component.

4.3.1 Segment Pair Builder

4.3.1.1 Mission

The mission of the Segment Pair Builder is to organize the
subject aircraft and nominee aircraft cusps in the global data
base TRAJECTORIES into subject-nominee segment pairs that are
associated with each co-occupied cell identified by the Coarse
Filter.

4.3.1.2 Design Considerations and Component Environment

Input

The inputs to the Segment Pair Builder Component include the
unique identifiers for the subject and nominee aircraft trajec-
tories, SubjectFl._Id and Nominee FlId, respectively, and the
times of the first and last subject aircraft and nominee
aircraft cusps associated with a co-occupied cell. These times
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Section 4.3'

PAIR TIME CHECK ALTITUDE HORIZONTAL ECST

BUILDER BUILDER

Section 4.3.1 Section 4.3.2 Section 4.3.3 Section 4.3.4 Section 4.3.5

FIGURE 4-16
FINE FILTER ORGANIZATIONAL STRUCTURE
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VARIABLES

Advisory_Tie_ViolEnd Latest time that the advisory
horizontal separation criterion is
violated

Advisory_TimeViolStart Earliest time that the advisory
horizontal separation criterion is

violated
Msep Dist Minimum separation distance between the

aircraft in the horizontal plane
Nominee FlId Unique identifier for the flight plan

of the nominee aircraft
NomineeViolEnd Pt Spatial coordinates of the nominee

aircraft at the end of the advisory
violation

z X coordinate
y Y coordinate
z Z coordinate

NomineeViolStartPt Spatial coordinates of the nominee
aircraft at the start of the
advisory violation

x X coordinate
y Y coordinate
z Z coordinate

Priority TmeViol End Latest time that the priority
horizontal separation criterion is
violated

Priority Time Viol Start Earliest time that the priority
horizontal separation criterion is
violated

Subject FlId Unique identifier for the flight plan
of the subject aircraft

Subject_ViolEndPt Spatial coordinates of the subject
aircraft at the end of the advisory
violation

z X coordinate
y Y coordinate
z Z coordinate

FIGURE 4-17
FINE FILTER GLOSSARY
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Subject_ViolStart Pt Spatial coordinates of the subject
aircraft at the start of the
advisory violation

z X coordinate
y 7 coordinate
z Z coordinate

Time Pkep Time of minimum separation between the
aircraft in the horizontal plane

Time Overlap )kx Latest time that the subject and
nominee segments overlap in time

Time Overlap Win Earliest time that the subject and
nominee segments overlap in time

TABLES

NOMNEE SEGMENT Pair of cusps representing the nominee
segment being processed

first t Time of the first cusp
first-x X coordinate of the first cusp
first"y Y coordinate of the first cusp
first z Z coordinate of the first cusp
firstcusp..type Cusp type of the first cusp
second t Time of the second cusp
second X coordinate of the second cusp
second-y Y coordinate of the second cusp
second z Z coordinate of the second cusp
secondcusp..type Cusp type of the second cusp
first.point AGGREGATE (first x, firsty, first z)
second point AGGREGATE (second z, second y, second z)
first ar G T (first-x, firstj)
second y_pair AGMEGATE (second.x, secondy)
hz first vtx AGGREGATE (first x,first y)
hzsec.vtx AGGREATE (second z,second y)

FIGURE 4-17
FINE FILTER GLOSSARY (Continued)
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SEGMENT PAIRLIST Table containing the subject and
nominee segment pairs for a
co-occupied cell identified by the
Coarse Filter

subj_firstt Time of subject's first cusp

subjfirst x X coordinate of subject's first cusp
subj first-y Y coordinate of subject's first cusp
subtfirst.z Z coordinate of subject's first cusp
subtfirstcusp_.type Cusp type of subject's first cusp
subj second..t Time of subject's second cusp
subi secondx X coordinate of subject's second

cusp
subj second y Y coordinate of subject's second

cusp
subtsecondz Z coordinate of subject's second

cusp
nominee first t Time of nominee's first cusp
noilnee first x X coordinate of nominee's first cusp
noad1ee-first Y coordinate of noainee's first cusp
nominee first z Z coordinate of nominee's first cusp

nominee first cusp_ Cusp type of nominee's first cusp
type

nominee second t Time of nominee's second cusp
nominee second z X coordinate of nominee's second

cusp
nominee second y Y coordinate of nominee's second

cusp
* nomineesecondz Z coordinate of nominee' second

cusp
nominee second cusp Cusp type of nominee's second cusp

type-
subject segment AGGREGATE (5* first 10 fields ,,)
nomineesegment AGGREGATE (** last 10 ftelds J*)
subject nomineesegment pair AGGREGATE (** all 20 fields **)

SUBJECTSEMENT Pair of cusps representing the
subject segment being processed;
fields defined like NOMINEE
SEGMENT above

FIGURE 4-17
FINE FILTER GLOSSARY (Concluded)
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ROUTINE Fine Filter;
In ffS Subject F1 Id IN;

ETOR LODAL gOTdS--OUT, PRIOENCOUNTERS OUT;
REFER TO SHARED LOCAL NOMINEES IN;
DEFINED IN GLOSSARY

SubjectFl..Id
Time Overlap Nin
TimeOverlapMax
Advisory_Time Viol Start
AdvisoryTy e Viol7d
Priority Tlme Viol Start
Priority Time Viol _End
Time _Iep
Msep Dist
SEAENT PAIR LIST;

DEFINE VABL"
Status Variable indicating the outcome of a

particular Fine Filter test;
DEFINE TABLES

PROCESSED SEGQENT Subject-nominee segment pairs
PAIR LIST previously processed by the Fine

Filter; fields defined like
SEGMNT PAIR LIST in Glossary;

FIGURE 4-18
FINE FILTER

4-44

, .-.. \/r (% *.*. -* 4 . *.. p .. ',. . . . :... *. -. ... ,/ - .. ,-. . , .... **4..-. . * . *,..,. ... "



-7a

# produce copy of ENCOUNTERS Table for Sector Workload Probe #
PRIOR ENCOUNTERS - ENCOUNTERS;
# repeat for each co-occupied cell identified by the Coarse Filter #
REPEAT FOR EACH NOMINEES RECORD9;

Sorganize cusps into subject-nominee segment pairs I
CALLT SegmentPairBuilder (SubjectFlId IN, NONMES.fl id IN,

I~OMNEE .sbjet~etrytime IN, NOMNEES. sub ject-exit tdm IN,
NOMINEES.nominee entrytime IN, NOMINEES.nominee exittime IN,
SEGMENT PAIR LIST OUT);

REPEAT FOR- EACHSEGMET PAIR LIST RECCRD;
WHERE SEGMENT PAIR LIST.subject nominee segment.pair IS NOT IN

PROCESSED SEGMENT PAIR LIST; # repeat only for subject- #
# nominee-segmen-pairis not previously processed I

INSERT INTO PROCESSED SEGMENTPAIRLIST
(subject nominee segmentpair - SEGMENTPAIR LIST.subject
nominee iegmentair);

# conduct tests of the subject-nominee segment pair in the #
# various dimensions #
CALL Time Check (SEGMENT PAIR LIST.subject _segment IN,

SEGMENT PAIR LIST.nominee segment IN, Status OUT, Time
Overlap Min OUT, Time Overlap Max OUT);

IF Status EQ 'Time intervals overlap'
*THN

CALL Altitude Check (SEGMENT PAIRLIST.subject-_segment IN,
SEGMENT PAIR LIST.nomireesegment IN, Status OUT);

IF Status EQ 'Violation -:f vertical separation criterion'

-ALL Horizontal Check (SEGMENTPAIRLIST.subjectsegment
IN, SEGMENT PAIR LIST.nominee.segment IN, SubjectFl
Id IN, NOMINEES.fl id IN, Time Overlap Min IN, Time
Overlap_Max IN, Status-UT, Advisory_TimeVi'olStart
OUT, AdvisoryTimeViolEnd OUT, Priority_TimeViol
Start OUT, PriorityTime_Viol End OUT, Time Msep OUT,
MepDist OUT);

IF Status EQ 'Violation of advisory horizontal separation
criterion'

THEN # store the encounter data in a table #
CALL Encounter ListBuilder (SEGMENTPAIR LIST.

subject segment IN,SEGMENT PAIR LIST.nominee
segment IN, Subject_FlId IN, NOMINEES.f_id-IN,

Advisory_Time Viol Start IN, AdvisoryTime Viol
End IN, Priority Time Viol Start IN, Priority Time
Violf"nd IN, TineMep IN, Msep_)st IN);

END Fine_ Filter;

FIGURE 4-18
FINE FILTER (Concluded)
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are denoted by the local variables SubjectEntry_Time, Subject
Exit Time, NosineeEntry Time, and Nominee Exit Time. In
addition to all of these variables which are provided by the
Fine Filter routine, the Segment Pair Builder Component uses
the global table TRAJECTORIES from which it obtains the cusp
information for the two aircraft.

Output

The output of the Segment Pair Builder Component is a table,
SEGMENT PAIRLIST, which contains in each record a pair of
segments, one from each aircraft, that are associated with a
specific co-occupied cell identified by the Coarse Filter.
Each segment In a record is a pair of cusps. The subject I
segment and the nominee segment in each record are passed on to
other components of the Fine Filter for specific testing.

4.3.1.3 Component Design Logic

The Segment Pair Builder component is called by the Fine Filter
for every co-occupied cell in the NOMINEES Table. Using the
parameters Subject Entry_Time and Subject Exit Time (obtained
from this table) to identify the subject cusps associated with
the cell, it selects these cusps from the TRAJECTORIES Table
and sorts them in increasing order of time. Every consecutive
pair of cusps in the resulting list represents a segment in the
trajectory of the aircraft. The component then repeats the
process for the nominee cusps associated with the same cell.
Finally, it combines subject and nominee segments from each
list into pairs, storing every possible combination in a local
table called SEGMENTPAIRLIST.

Figure 4-19 shows the PDL representation of the Segment Pair

Builder algorithm.

4.3.2 Time Check

4.3.2.1 Mission

The mission of the Time Check component of the Fine Filter is
simply to determine if the pair of segments under consideration
overlap in time and, if so, to calculate the endpoints of the
common time interval.
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ROUTINE SegmentPair Builder;
PARAMETERS Subject_FlId IN, Nominee F1Id IN, SubjectEntryTime IN,

Subject Exit Time IN, NomineeEtr_Time IN, NomineEitTime IN,
SEGMENf-PAIRLIST 

OUT;

REFER TO GULOALTRAJETkIES IN;
DEFINED IN GLOSSARY

Subjec _Fl.Id
Nominee Fl Id
SEGMENT PAIR LIST;

DEFINE VARIABLES
OrderedSubject_ Array whose rows are subject cusps

Cusps (*,5) ordered according to increasing time
SubjectEntryTime Time of the first subject aircraft cusp

associated with the co-occupied cell
SubjectExitTime Time of the last subject aircraft cusp

associated with the co-occupied cell
Subject Cusp_Count Total number of rows in Ordered

Subject-Cusps
Ordered Nominee Array whose rows are nominee cusps

Cuspis (*,5) - ordered according to increasing time
NomineeEntry_Time Time of the first nominee aircraft cusp

* associated with the co-occupied cell
Nominee Exit_Time Time of the last nominee aircraft cusp

associated with the co-occupied cell
* NomineeCuspCount Total number of rows in Ordered

Nominee Cusps
I Row index for Ordered SubjectCusps
J Row index for OrderedNomineeCusps;

FIGURE 4-19

SEGMENT PAIR BUILDER
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I select the subject cusps that are associated with the co-occupied #
# cell and order then by increasing time #
SELECT FIELDS cusp, cusp_.type

flOM TRAJECTORIES
INTO Ordered SubjectCusps
WHERE (TRAJECTORIES.fli d M Subject Fl Id) AND

TRAJECTORIES.time UE Subject EntryTime AND
TRAJECTORIES.time LE Subject ExitTime)

ORDERED BY TRAJECTORIES.time
RETURN COUNT (Subject Cusp_Count);

# select the nominee cusps that are associated with the co-occupied #
# cell and order then by increasing time
SELECT FIELDS cusp, cusptype

FROM TRAJECTORIES
INTO Ordered Nominee Cusps
WHERE (TRAJECTORIES.fli d EQ Nominee Fl Id) AND

RAJECTORIES.time GE Nominee Entry Time'AND
TRAJECTORIES.time LE Nominee ExltTime)

ORDERED BY TRAJECTORIES. time
RETURN COUNT (Nominee CuspCount);

# construct a table of subject-nominee segment pairs associated
# with the co-occupied cell #
FOR I - 2 TO Subject Cusp_Count;

FOR J - 2 TO Nominee Cusp Count;
INSERT INTO SEGMNT PAIR LIST

"(subjectsegment"= OrUered Subject Cusps(I-l,*) CONCAT
Ordered Subject Cusps(I,*), nominee segment - Ordered
Nominee-Cusps(J-l, ) CONCAT Ordered Nominee Cusps(J, Y),

END Segment_PairBuilder; - --

FIGURE 4-19
SEGMENT PAIR BUILDER (Concluded)
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4.3.2.2 Design Considerations and Component Environment

S Input

The inputs to the Time Check component are two tables, the
SUBJECTSEGMENT and the NOMINEESEGMENT, which are obtained
f rom the SEGMENT PAIRLIST created by the Segment Pair Builder
Component. The tiables- contain data describing the subject and
nominee segments under consideration.

output

The output of this component consists of a variable called
Statun which indicates whether or not the time intervals of the
two segments overlap and two parameters, Time_-Overlap_ Kin and
Time_-Overlap__?ax, which are the bounds of the common interval,
if such an interval exists.

L 4.3.2.3 Component Design Logic

The Time Check Component is called by the Fine Filter for each
subject-nominee segment pair not previously processed by the
Fine Filter. It establishes whether or not the two segments
under consideration overlap In time simply by determining If
either the subject aircraft segment occurs entirely before the
nominee segment or, conversely, the nominee segment occurs
entirely before the subject aircraft segment. If either case
is true, Status is assigned a message indicating that the time
Intervals do not overlap. otherwise, It Is assigned a message
designating that an overlap exists. The beginning and end of
the overlap is computed by finding the latest starting time and
earliest ending time, respectively, of the two segments.

Figure 4-20 is a PDL presentation of the Time Check Algorithm.

4.3.3 Altitude Check

4.3.3.1 Mission

The purpose of the Altitude Check Component of the Fine Filter
is to analyze those segment pairs that pass through the Time
Check for possible violations of the vertical separation
criterion by their respective aircraft.

4.3.3.2 Design Considerations and Component Environment

If either aircraft is transitioning in altitude over its
segment (this may include an aircraft in a holding pattern with
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ROUTINE Time_Check;
PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Status OUT,

Time Overlap Min OUT, Time Overlap Max OUT;
DEFINED-IN GLOSSARY

Time Overlap Mn
Time Overlap Max

, SUBJTCT SEGMENT
5NOMINEE-SEGMENT;

DEFINE VARIABLES
Status Variable indicatinu whether or not the subject and

nominee segments overlap In time;
# check to determine if subject segment ends before nominee segment #
# begins or nominee segment ends before subject segment begins #
IF SUBJECT SEGMENT.second t LE NOMINEE SEGMENT.first t OR

NOMINEE SEGMENT.second t LE SUBJECTSEGMENT.first t
THEN

Status - 'Time intervals do not overlapt;
*ELSE

Status - 'Time intervals overlap';
# calculate the endpoints of the overlap in time #
Time Overlap Min - MAX (SUBJECT SEGMENT.first t,

NOMINEE_ SEGNENT.fist t); -
Time Overlap Max - MIN (SUBJECT SEGMENT.second t,

NOMINEE SEGMENT.se-ond-t);
END Time Check;

FIGURE 4-20
TIME CHECK

4-50

A

%*~. ~ .S....*.. . . . -.. ~ **-* *'S*~10. ,



F*-*' o

vertical extent), the subject-nominee segment pair is
automatically considered a candidate for the Horizontal Check
Component without further testing by the Altitude Check
Component. Detailed analysis of such segment pairs by this
component is considered infeasible given the relatively small
number of cases expected to be eliminated from such an

analysis. For all practical purposes, the Coarse Filter
prefiltering of transitioning aircraft in the vertical
dimension seems sufficient.

input

The data to be input into the Altitude Check Component consist
of the subject aircraft segment and the nominee segment in the
form of the local tables SUBJECTSEGMENT and NOMINEESEGMENT,
and the vertical separation criteria, Sepz_ Hi and Sepz_Lo. The
separation criteria are global parameters which are the FPCP
standards for aircraft flying above and below 29,000 feet,
respectively.

Output

The output from the component is the variable Status which
indicates whether or not the subject-nominee segment pair
violates the vertical separation criterion.

4.3.3.3 Component Design Logic

The Altitude Check Component is invoked by the Fine Filter
whenever a subject-nominee segment pair passes through the Time
Check Component. A PDL representation of the Altitude Check
Algorithm is presented in Figure 4-21. The segments are first
checked for transitions in altitude. If at least one of the
aircraft changes altitude over its segment, Status is assigned
a message indicating that there is a violation of the vertical
separation criterion and the algorithm is terminated. This
allows the segment pair to proceed directly to the Horizontal
Check for reasons indicated in Section 4.3.3.2.

If the flights are both level, the algorithm selects the
appropriate value of the vertical separation criterion,
VertSep, on the basis of the altitudes of the two aircraft.
Whenever the altitude of either aircraft exceeds 29,000 feet,
Vert Sep is set equal to Sepz Hi. Otherwise, it is set equal
to Sepz_Lo. The difference between Sepz_Hi and Sepz Lo
reflects the greater separation required at higher altitudes
where the aircraft travel at faster speeds.
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~ROUTINE Altitude Check;

PARAMETERS SUJECTSEMENT IN, NOMINEESEGMENT IN, Status OUT;

* REFER TO GLOBAL Sepz_Hi IN, SepzLo IN;
DEFINED IN GLOSSARY

SUBJECT SEGMENT
NOMINE SEGMENT;

DEFINE VARIABLES
Status Variable indicating whether or not the subject and

nominee aircraft violate the vertical separation
criterion

Vert Sep Vertical separation criterion;

* if either segment is associated with a vertical maneuver or a #
I vertical hold, no altitude check is performed #
IF SUBJECT SEGMENT.firstcusp_type _ 'vertical maneuver' OR

SUBJECT SEGMENT.first cusp_type E 'vertical hold' OR
NOMINEE SEGMENT.first cusp_type RQ 'vertical maneuver' OR
NOMINEESEGMENT.firstcusp_type ZQ 'vertical hold'

THEN
Status - 'Violation of vertical separation criterion';

ELSE
7 set value of vertical separation criterion according to #
# whether or not either aircraft is above 29000 feet #
IF MAX (SUBJECTSEQIENT.first_z, NOMINEE SEG M.first.z)

GT 29000
THEN

VertSep - SepzHi;
ELSE

Vert Sep - Sepz_Lo;
# determine whether or not vertical separation criterion is #
# violated
IF ABS (SUBJECT SEGMENT.firstz - NOMINEE SEGMENT.firstz)

GE VertSep
THEN

Status - 'No violation of vertical separation criterion';
ELSE

Status - 'Violation of vertical separation criterion';
END Altitude Check;

FIGURE 4-21
ALTITUDE CHECK
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If the algorithm determines that the vertical distance between
the two aircraft equals or exceeds Vert Sep, it assigns to

Status a message indicating that there is no altitude
violation. Otherwise, Status is assigned a message indicating
the occurrence of an altitude violation.

4.3.4 Horizontal Check

4.3.4.1 Mission

The Horizontal Check Component of the Fine Filter is designed
to test those subject-nominee segments that filter through the
Time Check and Altitude Check Components for possible
violations of the FPCP advisory and priority horizontal
separation criteria.

4.3.4.2 Design Considerations and Component Environment

The component distinguishes between regular segments and
segments which correspond to a holding pattern or a vertical
maneuver in its determination of whether or not the horizontal
separation criteria are violated. The reason for the
distinction between the two cases is that the procedures
required to determine whether a violation occurs are
fundamentally different for the two cases. In addition, the
type of data that describes a violation for two regular
segments differs from that which describes the violation
involving at least one holding pattern or vertical maneuver
segment.

Input

The Horizontal Check component requires, as local inputs, the

U subject aircraft segment (SUBJECTSEGMENT), nominee aircraft
segment (NOMINEESEGMENT), unique identifiers for the subject
and nominee flight plans (Subject_Fl_Id and NomineeFlId), and
the bounds on the time interval in common between the two
aircraft (TimeOverlap Min and Time Overlap_Max). These inputs
are provided by the Fine Filter. In addition to the local
inputs, a global table called MANEUVER ENVELOPES is used by one
of the elements of the Horizontal Check Component to access
information regarding any vertical maneuvers or holding

patterns that may be associated with at least one of the
aircraft.
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Output

The output of the Horizontal Check component is Status, a
variable indicating whether or not the advisory horizontal
separation criterion is violated and, if so, a set of parameters
describing the violation. if the priority horizontal separation
criterion is also violated, then a set of parameters describing
this violation are included in the output. The complete list of
parameters include the Advisory_TimeViolStart, Advisory Time
Viol End, PriorityTine ViolStart, PriorityTime_Viol..End, the
time of minimum separation in the horizontal plane, Time Mep,
and the minimum separation distance in the plane, Mep Dist.

4.3.4.3 Component Design Logic

The Horizontal Check component is invoked by the Fine Filter
whenever a subject nominee segment pair passes through the Time
Check and Altitude Check. It, in turn, calls one of two possible
elements, the Regular Segment Horizontal Check or the Maneuver
Envelope Horizontal Check, depending on whether or not both
segments are regular or at least one of the segments is
associated with a holding pattern or a vertical maneuver. Each
of the elements invokes other routines, as indicated in the
following representation of the organizational structure of the
Horizontal Check Component and in paragraphs below.

Horizontal Check
Regular Segment Horizontal Check

Relative Vectors
Violation Times

Maneuver EnvelopeHorizontal Check
ManeuverEnvelopeTest

Envelope._FnvelopeViolationCheck
Get Box
EnvelopeEnvelope Intersect-Check
Edge Containment Check

Segment EnvelopeViolationCheck
Get lox
Envelope RegularSegmentIntersectCheck
EdgeContainmentCheck

Figure 4-22 shows a PDL representation of the Horizontal Check
algorithm.
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ROUTINE Horizontal Check;

PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject Fl Id IN,
NomineeFlId IN, TimeOverlapMiin N, Time_Overlap Max" I
Status OT, Advisory TimeViol Start OUT, Advisory_Time_Viol End
OUT, Priority Time Viol Start OUT, Priority_Time.Viol End OUT,
YIi_Msep OUT, Msep_Dist OUT;

DEFINED IN GLOSSARY
SubjectFl.Id
Nominee Fl Id
Time OverlapMin
Time OverlapMax
AdvisoryTimeViol Start
AdvisoryTimeViol-End
Priority Time Viol Start
Priori ty_Time_Vi ol-End

Time Msep
Asep Dist
SUBJECT SEGMENT
NOMINEE SEGMENT;

DEFINE VARIABLES
Status Variable indicating whether or not the subject and

nominee aircraft violate the advisory horizontal
separation criterion;

IF SUBJECT SEGMENT.first_cusptype E 'regular' AND
NOMINEESEGMENT.first-cusptype EQ 'regular'

a,, THEN
CALL RegularSegment HorizontalCheck (SUBJECTSEGMENT

IN, NOMINEE SEGMENT IN, Time OverlapMin IN, TimeOverlapMax
1, Status OUT, Advisory Time Viol Start OUT, Advisory Time
Viol End OUT, Priority_Time Viol Start OUT,-Priority_TTme_-
ViolEnd OUT, TimeMsep OUT, Msep_Dist OUT);

ELSE
CALL Maneuver Envelope_Horizontal Check (SUBJECTSEGMENT IN,

NOMINEE SEGMENT IN, SubjectFl-Id IN, Nominee-Flld IN, Time
Overlap_Min IN, Time OverlapMax IN, Status OUT, Advisory
TimeViolStart OUT, AdvlsoryTime-Viol End O'UT, Priority_
Time-Viol-Start OUT, PriorityTime-Viol-End OUT, TimeMsep

OUT, Maep Dist OUT);
END Hor- ontalCheck;

FIGURE 4-22

HORIZONTAL CHECK
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Regular Segment Horizontal Check

The Regular Segment Horizontal Check algorithm uses the
relative velocity and relative position vectors of the aircraft
over their segments to identify violations of the horizontal
separation criteria and to calculate the parameters which
describe these violations. It invokes a routine called

Relative Vectors which calculates the relative velocity and
relative position vectors of the two aircraft. It then uses

A. these relative vectors to compute the three coefficients which
define the separation distance function (see Appendix B for the
mathematical derivation of all of the parameters in the Regular
Segment Horizontal Check). The algorithm calls the routine
Violation Times, supplying it with the separation distance

.,-." function coefficents and the advisory horizontal separation
criterion AdvisorySeph. Violation Times determines if a
violation of this criterion exists and, if so, calculates the
start and end time of the violation. Under this circumstance,
the routine is called again with the priority separation

distance criterion, Priority_Seph, serving as an input.

1. The final portion of the algorithm calculates the time of
minimum separation in the (x,y) plane, TimeMsep, and the
minimum separation distance, Msep_Dist, using the formulas
derived in Appendix B. Time Msep is replaced by a bound of the
common time interval if it falls outside of this interval.
Specifically, if Time Msep is less than TimeOverlap_,lin or
greater than TimeOverilap_Max, then its value is set equal to
Time Overlap Min or Time Overlap Max, respectively, since,
under such cIrcumstances, tie "true time of minimum separation
is one of the common time interval's endpoints (Figure 4-23
illustrates the need for this reassignment of values). With
the time of minimum separation calculated, -the algorithm
finally computes Msep_Dist by simply substituting TimeMaep
into the separation distance function.

Figure 4-24 shows the PDL representation of the Regular Segment
Horizontal Check Algorithm.

Relative Vectors

This element of the Regular Segment Horizontal Check calculates
the horizontal relative velocity and the relative position vec-
tors of the subject and nominee aircraft over their segments.
It first computes the horizontal velocities of the subject
aircraft and the nominee within their respective segments using
the information provided in the cusps. The relative velocity
vector, Rel Vel, is then obtained by subtracting the nominee
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CASE 1: TimeOverlap_Iin Time sep E TimeOverlap_fax

Consequence: TimeHsep is left unchanged

Separation
Distance

CASE 2: Time_?sep 4 TimeOverlap_in

Consequence: Time isep set equal to Time Overlap_Min

Separation

Distance

02%(D 0

CASE 3: Timesep TimeOverlap_Max

* Consequence: TimeMsep set equal to Time-OverlapMax

Separation
Distance

Legend:

S1- Time_Overlap Hia
2 - Time_OverlapJax
3 - rime_ Msep

FIGURE 4-23
DERIVATION OF TIME OF MINIMUM SEPARATION
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ROUTINE Regular Segment HorizontalCheck;
PARAMETERS (SUBJECTSEGMENT IN, NOMINEESEGMENT IN, TimeOverlap__Min

IN, TimeOverlapMax IN, Status OUT, AdvisoryTimeViolStart OUT,
AdvisoryTime Viol End OUT, Priority Time Viol Start OUT,
Priority TimeViol End OUT, Time Msep OUT, Msep_Dist 09Y);

REFER T) GLOBAL Advisory_Seph IN, Priority_Seph IN;
DEFINE& IN GLOSSARY

TimeOverlap_Min
TimeOverlap_Max
Advisory_TimeViol Start
AdvisoryTime VioVEnd
Priority Time Viol Start
Priority_TimeViolEnd
TimeMsep
Msep_Dist
SUBJECT SEGMENT
NOMINEE SEGMENT;

DEFINE VARIABLES
Status Variable indicating whether or not the subject and

nominee aircraft violate the advisory horizontal
separation criterion

A Coefficient of the quadratic term in the separation
distance function (see Appendix B)

B Coefficient of the linear term in tie separation
distance function (see Appendix P)

C Constant term in the separation distance function
(see Appendix B)

Rel Vel Relative velocity of the subjec2 and nominee aircraft
in the horizontal plane (i.e., subject aircraft
velocity minus nominee aircraft velocity)

." x X component of the relative velocity
y Y component of the relative velocity

' RelPos Relative position of the subject and nominee aircraft
J. at TimeOverlap_Mmn in the horizontal plane (i.e.,

subject aircraft position miau nominee aircraft
poaition)

x X component of the relative position
y Y component of the relative position

State Variable indicating whether or not the subject and
nominee violate the specific horizontal separation
criterion under consideration

S.' DeltaT Length of time between TimeOverlap__Min and the time
of minimum separation;

FIGURE 4-24
REGULAR SEGMENT HORIZONTAL CHECK
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# calculate the relative vectors needed by this routine I
CALL RelativeVectors (SUBJECT-SEGMENT IN, NOMINEE SEGMENT IN,

Time Overlap_Min IN, Rel Vel OUT, Rel Pos OUT);
# calculate the coeffcients of the separation distance function #
A - MAGNITUDE(Rel Vel) ** 2;
B - 2 * DOT(Rel Vel, Rel Pos);
C - MAGNITUDE(Rl Pos) *W 2;
# determine if the advisory horizontal separation criterion is #
I violated and, if so, calculate the start and end times of the I
# violation #
CALL Violation Times (A IN, B IN, C IN, AdvisorySeph j#, Time

OverlapMin- IN, Time Overlap Max IN, State OUT, AdvisoryTime_
ViolStart OUT, Advisory_Time_Vior End OUT)"

. IF State EQ 'violation'
THEN

Status - 'Violation of advisory horizontal separation criterion';
# given that a violation of the advisory horizontal separation #
# criterion has been detected, determine if the priority #
I separation criterion is violated and, if so, calculate the "
# start and end times of the violation #
CALL Violation Times (A IN, B IN, C IN, Priority_Seph IN,

Time Overlap_£in IN, TimeOverlap_Max IN, State OUT, Priority_.
Time Viol Start OUT, Priority_TimeViol End OUT);

# calculate time of minimum separation and minimum separation #
# distance of the two aircraft in the horizontal plane #
Time_Msep - (-B / (2 * A)) + Time OverlapMin;
IF Time_Msep LT TimeOverlap_Mi
TWEN

TimeMsep - TimeOverlap_Min;
ELSE

IF Time_Msep GT TimeOverlapMax
THEN

Time_Msep - TimeOverlapMax;
Delta T -Time Msep - TimeOverlap Min;
MsepDist - SfRT(A* Delta T ** 2 + S *Delta T + C);

END RegularSegmentHorizonta7__Check;

FIGURE 4-24

REGULAR SEGMENT HORIZONTAL (Concluded)
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velocity from the subject velocit Similarly, the relative
position vector, RelPos, is derived by first calculating the
respective horizontal position vectors of the two aircraft at
Time_Overlap_Mn, the earliest time that the two segments
overlap in time, and then finding the difference of the two
vectors.

Figure 4-25 shows a PDL representation of the Relative Vectors
Algorithm.

Violation Times

This element of the Regular Segment Horizontal Check determines
whether or not the two aircraft violate the horizontal separa-
tion criterion, Seph, supplied as an argument to the routine
and, if so, calculates the starting and ending times of the
violation. The mathematical derivation of the relevant
formulas is provided in Appendix B.

The algorithm computes the discriminant of an algebraic
equation. This equation is obtained by subtracting the square
of Seph from the square of the separation distance function and
setting the result equal to zero. The nature of its roots
indicate whether or not Seph is violated. If the discriminant
is either a negative number or zero, the separation distance
between the aircraft is equal to or exceeds Seph. Thus, no
violation is expected to occur and the variable State is
assigned a message indicating this. The parameters Time
Viol Start and Time Viol End are set equal to a null value. If
the discriminant is-positive, then a violation is theoretically
possible, given the magnitudes and directions of the relative
vectors. Nevertheless, it is also possible that the violation
of the separation criterion occurs outside of the time interval
in common between the two aircraft. Whenever the derived
earliest and latest time of violations indicate that the
violation occurs outside the interval in common between the two
aircraft, then State is assigned a message that there is no
violation of the horizontal separation criterion. In this
case, the parameters Time Viol Start and Time Viol End are set
equal to a null value. Otherwise, State is made to indicate
that there is a violation. If either of the two time bounds of
the violation interval is located outside of the common time
interval, say Time Viol Start is less than TimeOverlap__Min,
then the corresponding- bound of the common time interval
becomes the new bound of the violation, that is (for the same
example), TimeOverlap_.Min becomes the new starting time of the
violation period. The objective of this substitution is to
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ROUTINE Relative Vectors;
PARAI.TErS SUBJECT SEGMENT IN, NOMINEESEGMENT IN, Time Overlap_Min

IN, Rel Vel OUT, RelPos OUT;
DEFINED IN GLOSSARY

TimeOverlap Min
SUBJECT SEGMENT
NOMINEE SEGMENT;

DEFINE VAlIABLES
Rel Vel Relative velocity of the subject and nominee

aircraft in the horizontal plane (i.e.,
subject aircraft velocity minus nominee
aircraft velocity)

•x X component of the relative velocity
y Y component of the relative velocity

Rel Pos Relative position of the subject and
nominee aircraft at Time_.Overlap_Miin in
the horizontal plane (i.e., subject
aircraft position minus nominee
aircraft position)

• X component of the relative position
y Y component of the relative position

SubjectVelocity Horizontal velocity of the subject aircraft
within its segment

x X component of the subject a/c velocity
y Y component of the subject a/c velocity

NomineeVelocity Horizontal velocity of the nominee aircraft
within its segment

• X component of the nominee a/c velocity
y Y component of the nominee a/c velocity

SuojectPosition Position of the subject aircraft in the
horizontal plane at time TimeOverlapMin

x X component of the subject a/c position
y Y component of the subject a/c position

NomineePosition Position of the nominee aircraft in the
horizontal plane at time Time .Overlap__Mi

x X component of the nominee a/c position
y Y component of the nominee a/c

position;

FIGURE 4-25

RELATIVE VECTORS
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# calculate the subject aircraft velocity, the nominee aircraft #
# velocity, and the relative velocity of the two aircraft #Subject Velocity - (SUBJECT SEGMENT.second xy_pair - SUBJECT SEGMENT.

firscxyjpair) / (SUBJECYT SEGMENT.secondt -
SUBJECT SEGMENT.first t);

Nominee Velocity " (NOMINEE SEGMENT.second xy pair - NOMINEE SEGMENT.
first xypair) / (NOMINEE SEGMENT.secona t -
NOMINEE SEGMENT.first t);

Rel Vel - SubjectVelocity - NomineeVelocity;
# cilculate the subject aircraft position, the nominee aircraft #
# position, and the relative position of the two aircraft at #
# Time_Overlap_Min
Subject Position - SUBJECT SEGMENT.first xy_pair + (Time_Overlap_Mn-

SUBJECTSEGMENT.firstt) * SubjectVelocity;
Nominee Position - NOMINEE SEGMENT.first xy_pair + (Time OverlapMn-

.- ~NOMINEE SEGMENT.firsttI * Nominee Velocity;
Rel Pos - Subject Position - NomineePosition;
ENDRelative.Vectors;

". ~ FIGURE 4-25
&ELATIVE VECTORS (Concluded)
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define the true violation period and not the theoretical one

obtained through straight calculations.

Figure 4-26 provides a PDL representation of the Violation
Times Algorithm.

Maneuver Envelope Horizontal Check

The Maneuver Envelope Horizontal Check algorithm tests for
violations of the FPCP horizontal separation criteria whenever
the subject and/or the object aircraft are engaged in hold
maneuvers or vertical maneuvers and previous tests for time
overlap and vertical separation have not ruled out the
possibility of an encounter. A test is first made to see if
the advisory horizontal separation criterion, Advisory_Seph, is
violated and if it is, a test for violation of the priority
separation criterion is made. These tests are done by the
Maneuver Envelope Test element. When either criterion is
violated, the corresponding start and end times of violation
(Advisory_Time Viol Start, Advisory Time Viol End, and/or
Priority_TimeViol_Start, PriorityTimeViofEnd) are returned.

Figure 4-27 shows the PDL representation of the Maneuver
Envelope Horizontal Check algorithm.

Maneuver Envelope Test

The Maneuver Envelope Test element performs the tests for
. violation of the horizontal separation criterion, Seph, when

either the subject or the object aircraft is in a maneuver.

Figure 4-28 illustrates the two holding pattern cases in which
this algorithm is invoked and Figure 4-29 illustrates the
vertical maneuver case. The horizontal criteria used are
independent of the position of the aircraft within the
maneuver. Violations depend only on the distance between the
regions, in the horizontal plane, covered by the envelopes or
segments involved. It is assumed that these regions are
rectangles in the horizontal plane.

In the following discussion, the horizontal projection of a
vertical maneuver will refer to the line segment in the
horizontal plane corresponding to the two extreme time points
of the maneuver (e.g., the right downstream and left upstream
points).

When both the subject and object aircraft are involved in an
airspace sweeping maneuver, a violation, in the horizontal
plane, occurs in any of the following three cases:
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ROUTINE Violation Times;
PARAMETERS A IN, B IN, C IN, Seph IN, .TimeOverlap_Min IN, Time_

Overlap MAx IN, State OUT, TimeViolStart OUT, Time ViolEnd OUT;
DEFINED IN GLOSSARY

Time Overlap_Mmn
Tine.OverlapMax;

DEFINE VARIABLES
A Coefficient of the quadratic term in the

separation distance function (see
Appendix B)

B Coefficient of the linear term in the
separation distance function (see Appendix B)

C Constant term in the separation distance
function (see Appendix B)

Seph Horizontal separation criterion
State Variable indicating whether or not the subject

and nominee aircraft violate the specific
horizontal separation criterion under
consideration

TimeViolStart Earliest time that the horizontal separation
criterion is violated

TimeViol End Latest time that the horizontal separation
criterion is violated

Discriminant Discriminant of the quadratic equation formed
by setting the difference of the separation
distance function squared and the horizontal
separation criterion squared to zero (see
Appendix B);

FIGURE 4-26
VIOLATION TIMES
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Discriminant B **2 - 4* A *(C Seph * 2);
IF Discriminant LE 0
T-equivalent to separation distance function #
# being greater than or equal to Seph I
THEN

State - 'no violation';
Time Viol Start - NULL;
Time_ViolEnd - NULL;

ELSE

calculate the times of violation start and end #
Time Viol Start - (-B - SQRT(Discriminant)) / (2 * A) +

T7ime_Oerlap Min;
Time Viol End -;(-B + SQRT(Discriminant)) / (2 * A) +

Time OerlapMin;
# determine if the entire violation period occurs outside of the #
# time interval common to both segments
IF Time Viol Start GT Time Overlap Max OR TimeViol End LT

Time Oveirlap_KMin:
THEN

State - 'no violation';
Time Viol Start - NULL;

" TimeViolEnd - NULL;

EL
State - 'violation';
# calculate the "true" times of violation start and end #
Time Viol Start - MAX(Time Viol Start, TimeOverlap Kin);

'q.; TimeViol-End - MIiNimeViolEnd, Timeovelap MaxY;

END ViolationTimes;

FIGURE 4-26
VIOLATION TIMES (Concluded)
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ROUTINE Maneuver_Envelope_Horizontal_Check;
checks for violation of horizontal separation criterion when the#

fsegments are maneuver envelopes#
tests for violation of both advisory and priority horizontal#

fseparation criterion are made; if a violation is detected#
#returns the start and end times of the violation#

PARAMETERS SUBJECTSEGMENT IN, NOMINEESEGMENT IN, SubjectFlId IN,
NomineeFl Id IN, Time OverlapMin IN, TimeOverlap_Max IN,
Status OUT, Advisory TimeViol Start OUT, AdvisoryTiae Viol End
OUT, Priority_TimeViol Start OUT, PriorityTimeViol End OUT,
Time Msep OUT, Maep_Dist OUT;

REFE TO GLOBML AdvisorySeph, IN, PrioritySeph IN;
DEFINED IN GLOSSARY

Subject Fl_Id
NomineeFlId
Time OvierlapKin
TimeOverlap Max
Advisory_Time ViolStart
Advisory TimeViolEnd
PriorityTime Viol Start
Priority yTimeViolEnd
Time Msep

- Mep _Dist
SUBJECT SEGMENT
NOMINEESEGMENT;

DEFINE VARIABLES
Status Variable indicating the outcome of a particular Fine

Filter test;

FIGURE 4-27
M&NEUVERENVELOPEHORIZONTAL CHECK
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Time_ Mep - NUlL;
Msep Dlot - NULL;
#first test for violation of advisory separation criterion#
CALL Maneuver Envelope Test (SUBJECT SEGMENT IN, NOMINEE SEGMENT IN,
-Tubject_F1-Id IN, Nominee Fl Id i7N, Time OverlapMin IN, Time

verlapMax IN, AdvisorySeph IN, Status OUT, Advisory.TimeViol_

Start OUT, Advisory_Time_Viol End OUT);

ftest for priority violation only if an advisory violation has been#
#detected#

IF Status EQ 'violation'
THEN ftest for violation of priority separation criterion#

Status - 'violation of advisory horizontal separation criterion';
CALL Maneuver Envelope_Test (SUBJECT SEGMENT IN, NOMINEE SEGMENT

IN, SubjectFlId IN, Nominee Fl Id IN, Time OverlapMmn IN,
Time Overlap Max IN, PrioritySeph IN, Status OUT, Priority
TimeViol Start OUT, Priority_TimeViol-End OUT-

END Maneuver Envelope _orizontal Check;

FIGURE 4-27
MANEUVERENVELOPE-HORIZONTAL CHECK (Concluded)
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o the horizontal maneuver envelope of one of the aircraft

is completely contained in the other

o the horizontal maneuver envelopes intersect

s the horizontal maneuver envelopes (closest points on
each) are within a distance of (advisory or priority)
Seph of each other

These cases are checked in the element Envelope Envelope
Violation Check.

When one of the subject or object segments is regular, a viola-
tion occurs in any of the following three similar cases:

" the regular segment is contained within the horizontal

maneuver envelope in the horizontal plane

" the regular segment intersects the horizontal maneuver
envelope

*-, " the distance (closest points on the segment and
envelope) between the regular segment and the horizon-
tal envelope are within a distance of (advisory or
priority) Seph of each other in the horizontal plane

These cases are checked in the element Segment Envelope
Violation Check.

The variable Seph is an input parameter, thus permitting this
algorithm to be used for the testing of the violation of both
the advisory and the priority horizontal separation criteria
(that is, AdvisorySeph and Priority Seph) by its calling
routine, Maneuver Envelope Horizontal Check. Output from this
routine are the variables Time Viol Start and Time Viol End,
and a status variable indicating whetRer or not a violation has
occurred. Whether the times of violation indicate advisory or
priority times depends on which input value for Seph was used.

Figure 4-30 shows the PDL representation of the Maneuver
V Envelope Test element.

Envelope Envelope Violation Check

The Envelope Envelope Violation Check element tests for
violation of the horizontal separation criterion whenever both
aircraft are involved in maneuvers. The envelope of each
aircraft is extended around its perimeter by one-half Seph

4-70

-1 -1 *- X .A



,._ ~ e 7 . JL V. * _ - .. i4. ,* _ '. . : . : ' : - -- - - -
-  ; ' :  

-. " r . .

ROUTINE ManeuverEnvelopeTest;
tests for violation of a horizontal separation criterion Seph#

#whenever either of the two aircraft is in a maneuver envelope#

PARAMETERS SUBJECT SEGMENT IN, NOMINEESEGMEWT IN, Subject_Fl_Id IN,
Nominee_Fl_Id IN, Time Overlap_Min IN, TimeOverlap Max IN, Seph
IN, Status OUT, Time Viol Start OUT, Time Viol End OUT;

DEFINED IN GLOY'A .Y
Subject F1 Id
NomineeFl-Id
Time Overlap Min
TimeOverlap Max
TimeViol Start
Time-ViolEnd
SUBJECT SEGMENT
NOMINEESEGMENT

DEFINE VARIABLES
Seph Horizontal separation criterion
Status Variable Indicating the outcome of a particular Fine

Filter test;
CHOOSE CASE

WHEN SUBJECT SEGMENT.first.cusp type IS IN ('hold', 'vertical
hold', 'vertical maneuver') AND NOMINEE SEGMENT.firstcusp_
type IS IN ('hold', 'vertical--old', 'vertical maneuver') THEN
#check the two maneuver envelope case#
CALL EnvelopeEnvelopeViolationCheck(SUBJECTSEGMENT IN,

NOMINEESEGMENT IN, Subject_Fl_Id IN, Nominee_FlId IN,
TimeOverlap Min IN, Time OverlapMax In, Seph IN,
Status OUT, Time ViolStart OUT, Time Viol End OUT);

WHEN SUBJECT SEGMENT.first cusp type IS IN ('hold', 'vertical
maneuver'3 THEN #obJect in hold, nominee regular#

CALL Segment EnvelopeViolation Check(Subject.Fl_Id IN,
SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Seph IN, Time_
OverlapMin IN, Time Overlap Max IN, TimeViolStart OUT,
Time Viol End ,OUT, Status OUT);

OTHERWISE Inominee in a maneuver envelope, subject is regular#
CALL Segment EnvelopeViolation Check(Nominee_Fl_Id IN,

NOMINEE SEGMENT IN, SUBJECT SEGMENT IN, Seph IN, Time
Overlap_Min IN, TimeOverlapMax IN, Time.ViolStart OUT,
Time Viol End OUT, Status OUT);

END Maneuver EnvelopeTest;

FIGURE 4-30
MANEUVER ENVELOPE TEST
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r (advisory and, in a subsequent call, priority), thus forming
two temporary two-dimensional envelopes in the horizontal plane
which are then compared to determine if a violation has
occurred. This is done by the Get Box element. Once this
extension is made, it is sufficient to test the two new
extended envelopes for the following cases. Let A be the
subject's extended envelope and let B be the object's extended
envelope. Then the three cases to be tested are the following:

* Do the boundaries of A and B intersect?
-~ e Is region A contained within the boundary of region B?

a Is region B contained within the boundary of region A?

Note that it is not necessary to test for closeness of regions
A and B since this is already accounted for in the extensions
made to the original envelopes.

The first case is accomplished by testing each edge of one
envelope against each edge of the other. If any two edges
intersect, the test ends and a violation message is set. If no
intersection is determined, then the envelopes are tested to
see if either is contained within the other. These tests are
done in the Envelope Envelope Intersect Check element.

* This case may be implemented by testing any edge (say the edge
connecting the right downstream and right upstream vertices) of
the boundary of region A against all edges of the boundary of
region B. The element Edge Containment Check is called to
perform the test for the selected edge being contained in the
boundary of region B.

If this test does not produce a violation, then the next case
is tested. The test for region B being contained within the
boundary of region A is accomplished by reversing the roles of

* . A and B in the discussion above. If a violation is determined,
then the times of violation start and end are set equal to the
minimum and maximum times of the ovetlap period, respectively.

Figure 4-31 illustrates a PDL representation of the Envelope
Envelope Violation Check element.

Get Box

The element Get Box builds a rectangular box around the
horizontal projection of the maneuver. Using the input
parameter S -as the separation distance, the algorithm extends
the perimeter of a holding pattern by this distance. In the

* .case of a vertical maneuver the extension is made by forming a
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ROUTINE EnvelopeEnvelopeViolation Check;
#tests for violation of a horizontal separation criterion Seph#

#whenever both aircraft are in maneuvers, (either holds or#
#vertical maneuvers)#

PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject F1 Id IN,
Nominee Fl Id IN, Time _-rlap_Min , TimeOverlapMax -IN_ SeT
IN, Status OUT, Time__ViolStart OUT, TimeViolEnd OUT;

DEFINED IN GLOSSARY
Subject Fl Id
Nominee F1 Id
TimeOverlapMn
TimeOverlap_Max
TimeViol Start
Time-ViolEnd
SUBJECT SEGMENT
NOMINE_SEGMENT;

DEFINE VARIABLES
Seph Horizontal separation criterion
Status Variable indicating the outcome of a particular Fine

Filter test;

DEFINE TABLES
SUBJECT BI VERTICES Vertices in horizontal plane of the

subject box surrounding the maneuver
envelope

rightdownstreamvertex
x x coordinate
y y coordinate

rightupstream vertex
x x coordinate
y y coordinate

left downstream-vertex
x x coordinate
y y coordinate

left_upstreamvertex
x x coordinate
y y coordinate

edgel AGGREGATE(right downstreamvertex, rightupstreamvertex)
edge2 AGGREGATE(right upstream vertex, left upstream vertex)
edge3 AGGREGATE(leftupstreamvertex, left_ ownstream vertex)
edge4 AGGREGATE(leftdownstreamvertex, rightdownstream_

vertex)
NOMINEE_BOKVERTICES Vertices in the horizontal plane

of the box surrounding the nominee
maneuver envelope; fields defined like
SUBJECT BOX VERTICES;

FIGURE 4-31
ENVELOPE ENVELOPE VIOLATION CHECK
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#check the two maneuver envelope case#
#get the coordinates for the subject, extended by a distance of#

#Seph/2 surrounding the horizontal hold or the horizontal segment#

#of the vertical maneuver#
CALL Get Box(Subject_Fl-Id IN, SUBJECTSEGMENT.firstt IN, Seph/2

IN, SUBJECT SEGMENT.first cusp_type IN, SUBJECT BOX VERTICES OUT,
Time OverlapMin INOUT, Time OverlapMax INOUT) -

#get the coordinates for the nominee, extended Uy a distance of#
#Seph/2 surrounding the horizontal hold or the horizontal segment#
#of the vertical maneuver#

CALL Get Box(Nominee Fl Id IN, NOMINEE SEGMENT.first t IN, Seph/2
IN, NOMINEE SEGMENT.first cusptype IN, NOMINEE BOX VERTICES OUT,
Time OverlapMin INOUT, Time Overlap Max INOUT);

#first Test if the segments intersect#
CALL EnvelopeEnvelopeIntersectCheck(SUBJECTBOXVERTICES IN,

NOMINEE BOX VERTICES IN, Status OUT);
IF Status i 'no violation'
THEN fthey do not intersect#
-- Ttest if subject envelope is contained within nominee envelope#

fneed only check one edge of the hold since they don't#
#intersect take the edge connected by the vertices right--
#downstream vertex and right upstream vertex#

CALL EdgeContainment Check(SUBJECT BOX VERTICES.Edgel IN,
* NOMINEE BOX VERTICES IN, Status OUT);

IF Status E 'no violation'
THEN fsubject box is not contained within the nominee's#

test if the nominee envelope is contained within the#
#subject's#

CALL EdgeContainment _Check(NOMINEE_BOX_VERTICES.Edgel IN,
SUBJECT BOXVERTICES IN, Status OUT);

IF Status EQ 'violation'
,.EN

-set the time of violation to the overlap times#
Time Viol Start - TimeOverlap_Min;
TimeViolEnd - Time_Overlap_Max;

END Envelope-Envelope__ViolationCheck;

FIGURE 4-31
ENVELOPE ENVELOPE VIOLATION CHECK (Concluded)
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box a distance of S around the line segment connecting the
right downstream and left upstream points of the envelope in
the (x,y) plane. Also in this case the Time Overlap Min and
Time Overlap_Hax are reset to coincide ;With tfie time
coordinates of these points.

Figure 4-32 illustrates a PDL version of the Get Box algorithm.

Envelope Envelope Intersect Check

The Envelope Envelope Intersect L'heck element tests the
extended box around the subject's envelope to see if it

4 . intersects the extended box around the object's envelope. This
is accomplished by testing each edge of the subject against
each edge of the object iteratively until a violation is
detected. If a violation is detected, the flag, Status, is set
to a violation status.

Figure 4-33 illustrates a PDL version of the Envelope Envelope
Intersect Check element.

Edge Containment Check

The Edge Containment Check element takes as input the vertices
of a box in the horizontal plane (BOXVERTICES) and the
vertices of an edge (Edge) and tests to see if Edge is
completely contained within the rectangle defined by BOX_
VERTICES. This is accomplished by first determining the point~s
of intersection of the line passing through the vertices of
Edge and the rectangle defined by BOXVERTICES. Once this is
done, if there is an intersection, then the line segment
defined by Edge Is tested to see if the x coordinates and y

'.4 coordinates of Edge are within the intervals defined by the x
and y coordinates of the intersection points. If they are,4
then Edge is completely contained in the rectangular region .

-: defined by BOXVERTICES and the flag, Status, is set to a
- violation.

* Figure 4-34 illustrates a PDL version of the Edge Containment
Check algorithm.

Segment Envelope Violation Check

If either of the segments to be tested is a regular segment,
then the horizontal envelope of the other is extended around
its perimeter by Seph miles to provide a buffer to guarantee
sufficient separation. This Is done by the element Get Box,
described above. A similar test to the ones above is then
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ROUTINE Get Box;
PARAMETERS Fl Id IN, T IN, S IN, CuspType IN, BOX VERTICES OUT

TimeOverlap_Min INOUT, TimeOverlap_Max INOUT;
REFER TO GLOBAL MANEUVERENVELOPES IN;
DEFINED IN GLOSSARY

TimeOverlap_Min
Time OverlapMax;

DEFINE VARIABLES
FlId Flight plan identifier of aircraft in hold
T Time of entry into hold
S Separation criterion
CuspType Type of cusp associated with this segment;

DEFINE TABLES
BOXVERTICES Vertices of the extended box; fields

defined like SUBJECT BOX VERTICES in
ROUTINE EnvelopeEnvelopeViolation

MANEUVERENVELOPE_TEMP Temporary copy of one record of MANEUVER-
ENVELOPES, stored as a table; fields
defined like MANEUVER ENVELOPES

vert edge AGGREGATE(lu x,lu_y,rd x,rd_y) #vertices of edge#

#defined by the start and end of the envelope in the#
#horizontal plane associated with the minimum and#
#maximum time in the envelope#;

MANEUVER ENVELOPE TEMP - SELECT FIELDS ALL
FROM RMNEUVER ENVELOPES
WHERE MANEUVERENVELOPES.Flid EQ FlId AND MANEUVERENVELOPES.

time EQ T;
IF Cusp Type M 'hold' OR CuspType EQ 'vertical hold'
THEN #hold case#

BOX VERTICES - MANEUVER ENVELOPE TEMP;
Calculate the coordinates of the-extended holding pattern for the

holding pattern with vertices BOXVERTICES extending it by a
distance S around its perimeter;

ELSE #vertical maneuver envelope#
Calculate the coordinates of the box arouud the segment

MANEUVERENVELOPE_TEMP.vertedge a distance of S surrounding
the segment;

#override the values of the overlap times by the endpoint times#
#of the vertical maneuver, given by the right#
#downstream and left upstream vertices#

TimeOverlapMin - MANEUVER ENVELOPE TEMP.lu t;
Time_Overlap_Max - MANEUVERENVELOPETEMP. rdt;

Store the resulting extended box vertices back in BOXVERTICES;
END GetBox;

FIGURE 4-32

GET BOX
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ROUTINE EnvelopeEnvelope IntersectCheck;
PARAMETERS SUBJECT BCK VERTICES IN, NOMINEE BOX VERTICES IN, Status

DEFINE VARIABLES
Status Variable indicating the outcome of a particular Fine

Filter test;
DEFINE TABLES

SUBJECTBCXVERTICES Vertices of the box surrounding the
maneuver envelope of the subject in
the horizontal plane; fields defined
like SUBJECT BOX VERTICES in ROUTINE
EnvelopeEnvelopiViolation_ Check

NOMINEE-BOX VERTICES Vertices of the box surrounding the
maneuver envelope of the nominee in
the horizontal plane; fields defined
like SUBJECT_BOXVERTICES;

Status - 'no violation';

REPEAT UNTIL Status M 'violation' OR all edges of SUBJECT_BOX_
VERTICES have been tested;
Select the next edge from SUBJECT BOX VERTICES;
REPEAT UNTIL Status M_ 'violation' OR7 all edges of NOMINEEBOX_

VERTICES have been tested;
Select next edge from NOMINEEBOXVERTICES;
IF the edges selected intersect in the horizontal plane
THEN

Status - 'violation';
END Envelope_EnvelopeIntersectCheck;

FIGURE 4-33
ENVELOPE ENVELOPE INTERSECT CHECK
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ROUTINE Edge _ContainmentCheck;
PARAMETERS REGULARSEGMENT IN, BOXVERTICES IN, Status OUT;
DEFINE VARIABLES

Status Variable indicating whether or not the
subject and nominee segments violate
the horizontal separation criterion

Box Test Vertex(4) Array containing vertices of the box
RegularLineCoeff(3) Coefficients of the line through the

regular segment
Box Line Coeff(3) Coefficients of the line through an

edge of the box
I Index tracking sides of the box
J Number of intersecting points

between line and lines of the box
X1 Minimum intersection x coordinate
X2 Maximum intersection x coordinate
Y1 Minimum intersection y coordinate
Y2 Maximum intersection y coordinate
TestPoint Variable used to test point of

intersection
X x coordinate
Y y coordinate

IntPt(2) Points of intersection, if they intersect
end points of overlap of edges if edges
coincident with an edge of the box

X x coordinate
Y y coordinate;

DEFINE TABLES
REGU-LAR-SEGMENT Pair of cusps representing the regular segment

being processed; fields defined like SUBJECT
SEGMENT in Glossary

BOX VERTICES Vertices of the box surrounding the manuever
envelope in the horizontal plane; fields
defined like SUBJECT BOX VERTICES in ROUTINE
EnvelopeEnvelope Horizontal Check;

FIGURE 4-34
EDGECONTAINMENTCHECK
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Status " 'no violation';
Box Test Vertex(l) - BOX VERTICES.right downstream vertex;
Box Test Vertex(2) - BOX VERTICES.right upstream vertex;
Box_TestVertex(3) - BOX VERTICES.left downstream vertex;
Box TestVertex(4) - BOX-VERTICES.left-downstream-vertex;
#deermine equation of the line connecting vertices of#

#REGULAR SEGMENT in the xy plane#
Regular_LineCoeff - LINE(REGULARSEGMENT.hz_firstvtx,

REGULAR SEGMENT.hz-sec vtx);
I - I; J -- 0;
#determine points of intersection of line coincident to Edge and the#

#edge of BOX VERTICES#
REPEAT UNTIL I 6T 4 OR J GE 2

ftest Ith edge#
Box Line Coeff - LINE(Box Test Vertex(I), Box Test Vertex(I+l));
IF the lines BoxLine Coeff and Regular Line Coeff intersect

"get intersection point1
Test Point - Box Line Coeff INTERSECTION Regular Line Coeff;
#tes7t if the point lies on the edge of the box# - -

- Xl - MIN(Box Test Vertex(I).X, Box Test Vertex(I+l).X);
X2 - MAX(Box-TestVertex(I).X, Box-TestVertex(I+l).X);
Yl - INBox_-Test-Vertex(I).Y, Box-TestVertex(I+l).Y);
Y2 - M__(Box-Test-Vertex(I).Y, Box_-Test_-Vertex(I+l).Y);
IF Te t Poin7t.X is in the open interval (XI,X2) AND

TebCPoint.Y is in the open interval (Yi,Y2)
THEN #ies on the edge#

J-nJ+l;

IntPt(J) - TestPoint;
#check for containment within the box#
IF J NE 0 the lines intersectl
THEN ltest if Edge is contained in the box by checking if the#

7 1ine segment
Xl - MIN(IntPt(l).X, IntPt(2).X);
X2 - MAX(Int Pt(l).X, Int Pt(2).X);
Y1 - W--N(Int-Pt(l).Y, Int-t(2).Y);
Y2 - x(Int-Pt(1).Y, Int-Pt(2).Y);
IF the projection of REGULAR SEGMENT on the x-axis is in the

interval [Xl, X2] AND the projection of REGULARSEGMENT on
the y-axis is in the closed interval [Yl, Y2]

THEN
Status - 'violation';

I - I + 1; lnext edge#
END Edge_ContainmentCheck;

FIGURE 4-34
EDGECONTAINMENTCHECK (Concluded)
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performed. First, the regular segment is tested to see if it
intersects the extended envelope in the horizontal plane. This
test is performed by the element Segment Envelope Intersect
Check. If they intersect, then a violation exists and the
appropriate status message is set. In this case, the time of
violation start is set equal to the maximum of the time of
overlap start and the minimum of the intersection times. The
time of violation end is set equal to the minimum of the time
of overlap end and the maximum of the intersection times. If
the intersection occurs at a single point, then the end and
start time of violation are equal.

If no violation is detected, then the segment is tested to
check whether it is completely contained within the region of
the extended horizontal envelope. This is accomplished by
calling the element Edge Containment Check, described above.
If a violation is detected, then an appropriate message is set
and the time of violation start and end are set equal to the
time of overlap minimum and maximum, respectively.

Figure 4-35 illustrates a PDL version of the Segment Envelope
Violation Check element.

Segment Envelope Intersect Check

The Segment Envelope Intersect Check element tests a regular
segment of an aircraft and the extended rectangular region
about the horizontal projection of the envelope for
intersection. Each edge of the rectangular region is tested
against the regular segment to see if they are coincident and
overlap and if they intersect. If this is the case, testing
ends with a violation status and the points of overlap are
determined. If not, the edge of the rectangular region is
tested for intersection with the regular segment and the points
of intersection are determined.

In the case of a violation, the times of violation are computed
by first computing the times associated with the points of
intersection and then determining the maximum between the Time
OverlapMmn and the first time intersect in the case of the

*TimeViolStart and determining the minimum between the Time
* OverlapMax and the second time intersect in the case of Time_

ViolEnd. The times associated with the intersection points
are determined by interpolating using the fact that the
velocity is assumed constant for a given aircraft.

Figure 4-36 illustrates a PDL version of the Segment Envelope
Intersect Check algorithm.
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ROUTINE SegmentEnvelope _Violation Check;
PARAMETERS EnvFlId IN, ENVELOPESEGMENT IN, REGULARSEGMENT IN,

Seph IN, TimeOverlap_Mn IN,Time_Overlap_Max IN, Time_Viol_
Start OUT, Time_ViolEnd OUT, Status OUT;

DEFINED IN GLOSSARY
Nominee Fl Id
Time OverlapMmn
TimeOverlap_Max
Time Viol Start
TimeViol End;

DEFINE VARIABLES
Env Fl Id Flight identifier of maneuver envelope segment
Status Variable indicating the outcome of a paricular Fine

Filter test
Seph Horizontal separation criterion;

DEFINE TABLES
ENVELOPESEGMENT Pair of cusps representing the segment being

processed for the segment that is in a
maneuver envelope; fields defined like
SUBJECTSEGMENT in Glossary

* REGULAR SEGMENT Pair of cusps representing the segment
being processed for the regular segment;
fields defined like ENVELOPESEGMENT

BOX VERTICES Vertices of the box surrounding the maneuver
envelope in the horizontal plane; fields
defined like SUBJECT BOX VERTICES in ROUTINE
Envelope_Envelope_Horizontal_Check;

FIGURE 4-35
SEGMENTENVELOPEVIOLATIONCHECK
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o.,#get the coordinates for the nominee hold extended a distance#

#of Seph about its perimeter#
" CALL Get Box(Env Fl Id IN, ENVELOPE-SEGMENT.first__cusp-t IN,

Se-'-ph IN, ENVELOPESEGMENT.first._ cusp_jype IN, BOX VERTICES OUT.
" ~Time Overlap_ Mln INOUT, Time OverlapMax IN--UT);9 --

" " #test 1f the box around the envelope and the reqular segment#
i #intersect#

CALL Segment__Envelope _IntersectCheck(BGX VERTICES IN, REGULAR
SEGMENT IN, TimeOverlap_ Iin IN, TimeOverlap_ ax IN, TimeViol

Start OUT, Time Viol End OUT, Status OUT);
IF Status EQ 'no violation'

~THEN

-- 'check if regular segment is contained in box#
CALL EdeContainment Check(REGULAR SEGMENT INV BOX VERICES IN,

0*0

IF Status EQ 'violation'

WHEN
Time Viol Start Time Overlap Ln;
Time Viol End T Time _Overlap _Max;

END SegmentEnvelopet olation Check;

FIGURE 4-35SEGMENT ENVELOPE VIOLATION CHECK (Concluded)
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ROUTINE Segment_EnvelopeIntersect_Check;
PARAMETERS BX_ VERTICES IN, SEGMENT IN, TimeOverlap Min IN, Time

Overlap Max-IN, TimeViolStart OUT, TimeViolEnd OUT, Status

OUT;
DEFINED IN GLOSSARY

Time Overlap Min
Time OverlapMax
TimeViol Start
Time viol Ed;

DEFINE VARIABLES
Status Variable indicating the outcome of a

particular Fine Filter test
Int.Pt(2) Points in x,y,t of intersection between the

box and segment
T t coordinate
Hz comp Horizontal coordinates

X x coordinate
Y y coordinate

Test BoxEdges(4) Array of edges used in testing for
intersection

first x x coordinate of first vertex
first y coordinate of first vertex
secon-x x coordinate of second vertex
second"y y coordinate of second vertex

Line_Segment_Coeff Coefficients of the equation of the line
passing through all points of the segment
named SEGMENT

LineBoxCoeff Coefficients of the equation of the line
passing through all points of an edge of
the box defined by the vertices BOX
VERTICES

I, J Indices for looping;
DEFINE TABLES

BOX VERTICES Vertices of the box surrounding the manuever
envelope of the segemnt being considered;
fields defined like SUBJECT BOX VERTICES in
ROUTINE EnvelopeEnvelopeHoriz-ontalCheck

SEGMENT Pair of cusps representing the regular segment
being considered; fields defined like SUBJECT
SEGMENT in the Glossary;

FIGURE 4-36
SEGMENT ENVELOPE INTERSECT CHECK
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TestBoxEdge(l) - BaXVER!ICES.edgel; ftemporary array of box edges#
Test _Box .Edge(2) - BOXVER.TICES.edge2;
TestBox Edge(3) . BOX VER.TICES.edge3;
TeatBoxEdge(4) - BOICVERTICES.edge4;
Status - 'no violation';
I -1; j 0;
#determine the coefficients of the line passing through SEGMENT#
Line Segment Coeff - L INE (SEGMENT.hz first vtx, SEGMENT.hz-sec vtx);
#determine 6e points 7ointersectio 4# _

REPEAT UNTIL J EQ 2 01 all edges of BOXVERTICES have been tested;
Lino D-cTest_-BoxTet xEdg eI)); hime through Ith edge#
IF i7neBoxCoef f -R Line_SegmbentCoef f AND the edges (SEGMENT .hz_

first vtzx, SEGMENT.hz sec vtx) and TestBox Edges(I) overlap
THEN lim7es coincide, get intersect end ptsl

Status - 'violation';
* mt_ Pt(l).X - )AX(MIN(SEQIENT.firstx, SEGMENT.second x),

RIN(TestBoxEdes(I).first x, TeatBox .Edges(I).second x));
Int_Pt(2).X - ?fIN(W&(SEGMRNT.first x, SEGMENT. second x),

RamaTetBox.Edes(I).first x, TestBoxEdges(I).second x));
mntPtul).- M&AXIN(SEMENT.first y, SEGMENT.second y),

MIN(TestBoixdes(I).firsty, TestBox _Edges(I).second~y)
ImtPt(2).Y - MIN(NA.X(SEGMENT.firstjv, SEGNENT.second y),

MAX(Test_Boiidses(I).firstjy, TestBoxEdges(I).secondjy));
EISE it-est for unique Intersect p-Intd

IF SEGMENT and TestBox _Edge(I) intersect in the (x,y) plane
THEN

J - J + 1;
Status - 'violation';
Int Pt(J - Line Box Coeff INTERSECTION LineSegmentCoeff;

In+i; next edge#-
IF Status EQ 'violation'

'.1 ifEN#obtain the times of violation#
FOIL J - I. TO 2; *coupute the intersect points' time coordinates#
It Pt(J).T f (SEGMENT.first t - SEGMENT.second t)

(DIST(SEGIENT.hz first vtx, SEGNENT.hz sec vtx)I
D=IST SEGMENT.hz_'First Ivtx, IntPt(J).Hi Coump)) +
SEGMENT.first t;

Time Viol Start - MAX(TimeOverlap_ Mi, MIN(IntPt(l).T, Int_

Time Viol End - MIN(Time Overlap_?Max, MAX(IntPt(l).T, Int_
#t(2).Y);

IF TimeViol_-Start EQ TimeViolEnd
REN fiao violation as they intersect in a point#

Status m 'no violation'
END Segment EvelopeIntersectCheck;

FIGURE 4-36
SEGMENTENVELOPE INTERSECTCHECK (Concluded)
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4.3.5 Encounter List Builder

4.3.5.1 Mission

The mission of the Encounter List Builder is to insert into the
global table, ENCOUNTERS, information describing the violation
detected by the three previous components (Time Check, Altitude
Check, and Horizontal Check) of the Fine Filter. Given that a
complete encounter may extend over several segments for one or
both aircraft, this information may describe only part of an
encounter. Under such circumstances, the information is mergedwith data associated with other portions of the encounter, if

the data is already in the table as a result of previous
Iterations of the Fine Filter.

The ENCOUNTES table is a source of encounter information
available for use in the display provided to the controller.

4.3.5.2 Design Considerations and Component Environment

Input

The list of inputs to the Encounter List Builder consists of
all those local tables and parameters which are used to
describe the violation. They include the subject and nominee
aircraft segments (SUBJECT SEGMENT and NOMINEE SEGMENT), unique
identifiers for the subjec't and noinee aircraft flight plans
(Subject Fl Id and Nominee F1 Id), advisory violation start and
end timies - (Advisory_Time-Vi-olStart and Advisory_Time Viol
End), priority violation start and end times (Priority_Time-
Viol Start and PriorityTime ViolEnd), time of minimum
separation between the aircraft-in the horizontal plane (Time
Msep), and miniam separation distance in the plane (Msep-
Dist). In addition, the Encounter List Builder accesses the
global table ENCOUNTERS which it updates with information from
the current encounter or portion of an encounter.

Output

The output of the Encounter List Builder is an updated version
of the ENCOUNTERS Table.

4.3.5.3 Component Design Logic

The Encounter List Builder is called by the Fine Filter
whenever the subject-nominee segment pair under consideration
passes through the checks in the Time Check, Altitude Check,
and Horizontal Check elements. It, in turn, calls the element
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Violation Boundaries, which calculates the spatial coordinates
of the two aircraft at the start and end of the advisory
violation, and the elements Pref ix Merge and Suf fix Merge,
which essentially merge the data associated with the current
violation with that already in the table if the current
violation is found to be part of an already identified
encounter.

As indicated in Figure 4-37, which shows a PDL representation
of the Encounter List Builder algorithm, Violation Boundaries
is called f irst * The algorithm then iterates through each
record in the global table ENCOUNTERS, searching for tj,. ,
possible occurrence of an encounter portion that immiediately
precedes or follows the current violation. Specifically, if the
advisory violation end time of a record in the table is equal
to the advisory violation start time of the current violation,
then the record def Ines an encounter port ion which imdiately
precedes and adjoins the current violation. Under such a,
circumstance, the Encounter List Builder Algorithm calls Prefix
Merge which compares the data in the record with that of the
current violation and changes the values of the violation
parameters so they are descriptive of the merged encounter

* portions.

Similarly, if the advisory violation start time of the
ENCOUNTERS record is equal to the advisory violation end time
of the current violation, then the record describes an
encounter portion which immediately f ollows the current
violation. Suffix Merge is called to re-evaluate the violation
parameters so that the parameters describe the merged encounter
port ions.

Subsequent to each merge, the corresponding record in the
ENCOUNTERS Table is deleted. Once all of the records in the
table are tested, the new violation parameters are inserted in
the table in the f orm of a new record. If the table does not
contain portions of the same encounter as the current
violation, the algorithm simply inserts the unaltered values of
the violation parameters (as calculated by the Horizontal Check
element) directly into the table.

It should be noted that if the table contains an encounter
portion that precedes the current violation and another portion
that follow It, the algorithm will combine all three portions,
and the data inserted into the table will describe the new
encounter or encounter portion. In the following paragraphs,
the phrase "current violation" is used to refer to either the
violation identified by the Fine Filter in this iteration or

4-86



ROUTINE Encouter List Builder;
PARAMETES SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, SubjectFl Id IN,

Nominee Fl Id IN, Advisory_ Time Viol Start IN, AdvisoryTime-
Viol nd I-N, PriorityTimeViolStart IN, PriorityTimeViol-End
IN, Time Moep IN, Msep Diat IN;--

REFER TO GIO&ML Ad-visorySept IN, Priority Sept IN, ENCOUNTERS INOUT;
DEFINED IN GLOSSAR

Subject Fl._Id
Nominee Fl_Id
AdvisoryTime Viol Start
Advisory_Time Viol-End
Priority Time Viol Start
PriorityTime-Viol-nd
Time Meep
MsepDIat
Subject Viol Start Pt
Subject-Viol End Pt
Nominee Viol Start Pt
NomineeViolEnd Pt
SUBJECT-SEGI&T
NOMINEESEGMENT;

FIGURE 4-37
ENCOUNTER LIST BUILDER

.
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* calculate the spatial coordinates of the subject and nominee
# aircraft at the start and end of the violation #
CALL Violation Boundaries (SUBJECT SEGMENT IN, NOMINEE SEGMENT

IN, Advisoz_TimeViol Start IN, Advisory_Time_ViolEnd IN,
Subject-Viol StartPt OUT, SubjectViolEnd Pt OUT, Nominee_
Viol Start Pt OUT, Nominee Viol End Pt OUT);

REPEAT FOR EACH ENCOUNTERS RECORD
WHERE ENCOUNTERS.first_flid R SubjectFl Id AND ENCOUNTERS.

secondfl.id EQ Nominee Fl Id;
* if the data in this record describe an encounter portion which #
# adjoins the newly detected encounter, re-evaluate the violation#
# parameters so that they describe the combined encounter #
IF ENCOUNTERS.advviolendtime EQ Advisory_TimeViolStart
THEN

CALL PrefixMerge (ENCOUNTERS IN, Advisory_Time_ViolStart
INOUT, Priority_T ieViol Start INOUT, Priority_Tme_Viol_
End INOUT, Msep_Mst INOUT, Time Msep INOUT, SubjectViol-
Start Pt INOUT, Nominee Viol Start Pt NOUT);

DELETE FROM ENCOUNTERS; #Rimove current record being#
kconsideredl

ELSE
IF ENCOUNTERS.adv_violstart time M Advisory_TimeViolEnd
TEEN

CALL SuffixMerge (ENCOUNTERS IN, Advisory_TimeViolEnd
INOUT, PriorityTime Viol Start INOUT, PriorityTime_
Viol End INOUT, Msep-st INOUT, Time Msep INOUT,
Subject Viol End Pt INOUT, NomineeViolEnd Pt INOUT);

DELETE FROM ENCOUNTERS;
# record the encounter data #
INSERT INTO ENCOUNTERS (first_fl id - Subject-_F_Id, second fl id -

NomineeF1 Id, adv viol start time - Advisory_TimeViol Start,
- adv viol end time - Advisory_Time ViolationEnd, displayas

advisorytime - Advisory_Time ViolStart - AdvisorySept, prior
viol start-time - Priority TimeViol Start, priorviol-end time -

Priority_Time_Violation End, display--as_priority__time - Priority
Time Viol Start - PrioritySept, msep_ time - Time_Msep, maep
distance - Msep_Dist, fll viol startpt - Subject Viol StartPt,
fll violend pt - Subject7_Viol_EndPt, f12_viol__start_pt =

Nominee Viol Start Pt, f12__viol end_pt - NomineeViolEndPt);
END Encounter_L st _Bu ilder;

FIGURE 4-37
ENCOUNTER LIST BUILDER (Concluded)

4-88

.......................................-.
.. * - *



Figure 4-39 contains a PDL presentation of the Prefix Merge
Algorithm.

Suffix Merge

This element provides values for the parameters of the complete
encounter or encounter portion that results from the merging
of the current violation and the encounter portion which
follows it in time. The data for the encounter portion which
follows it in time is contained in the single record table
called SUFFIX. The general nature of the Suffix Merge
algorithm is the same as that of Prefix Merge. Only the list of
parameters that are reset is different.

Figure 4-40 contains a PDL presentation of the algorithm.

4.4 Maintenance

The role of the Maintenance subfunction is to maintain updated
versions of the various global and shared local tables used by

FPCP. Whenever the stimulus that invokes FPCP Indicates a
trajectory update, and the nature of this update is a revised
flight plan, an outbound flight or a terminated flight, all
references to the flight identification are removed in the
shared local tables SPARSE TREE, ALLOBJECT BLOCKS,
ALLOBJECT TREE, and in the gloTal tables SPARSe CELLS and
ENCOUNTER. The removal of the references to the flight
identification from all but the ALLOBJECTBLOCKS and the
ALLOBJECT TREE tables is a trivial process involving the
deletion of appropriate records from these tables. Hence, the
process is not discussed further here. On the other band,
removing the references to the flight identification from the

ALLOBJECT BLOCKS and ALLOBJECT TREE tables is not trivial. The
routine that accomplishes tiis task, Delete Aircraft, is
considered to be a principal component of the Maintenance
subfunction.

After the data associated with an aircraft with a revised
trajectory have been removed from the appropriate tables, the
various Coarse Filter and Fine Filter tests are invoked. These

same tests are invoked directly (without any prior updating of

the tables by Maintenance) for a new trajectory, a horizon
update, and a trial probe. In the case of a trajectory update
(new or revised) or a horizon update, one. he tests are

completed, the subject aircraft is referenced as an object
aircraft in the tables. Thus, information about its trajectory
gets included in the ALLOBJECT TREE table. The
ALLODJECT BLOCKS Table is modified to reflect the new occupancy
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ROUTINE Prefix Merge;
PARAMETERS PREFIX IN, AdvisoryTime Viol Start INOUT, Priority Time_

Viol Start INOUT, Priority_TimeViolEnd INOUT, Msep_DIist INOUT,
Time Macp INOUT, SubjectViolStartP INOUT, NomineeViolStart-
Pt IWOUT;

DEFINED IN GLOSSARY
AdvisoryTime Viol Start
Priority Time Viol Start
PriorityT1meViolEnd

TimeMacp
Subject_ ViolStartPt
Nominee Viol StartPt;

DEFINE TABLES-
PREFIX Single record table which contains data

describing an encounter portion which
immediately precedes the current encounter
portion in real time; fields defined like
global table ENCOUNTRS;

Advisory_TimeViolStart - PREFIX.adv viol start-time;
IF PREFIX.prior-7vol start-time NE NUL
TEN

PriorityTimeViolStart - PREFIX.prior viol-start time;
IF Priority TimeViolEnd E2. NULLJ
ifEN

Priority TimeViolEnd - PREFIX-prior viol end time;
* IF PREFIX.aepdistance NE NULL AND Msep mat NE NULL

HfEN
IF PrEFIX.mepistance LT Macp_mat

Map Xst - PREFIX.mepistance;
Time Maep - PREFIX.mep_"time;

ELSE
IF Macp Piat EQ NULL
TEN

Macp mat - PREFIX.msep istance;
TimeMacp - PREFIX.mep_time;

Subject ViolStartPt - PREFIX.flSvioltart Ot;
NomineeViolStartt - PREFIX.f12viol-atartpt;
END Prefix _rge;

FIGURE 4-39
PREFIX MERGE
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ROUTINE Suffix Merge;
PARAMETERS SUFFIX IN, Advisory_TimeViol End INOUT, Priority_Time

Viol Start INOUT, PriorityTime Viol End INOUT, MsepDist INOUT,
Time-Mep INOUT, SubjectViol End Pt'INOUT, Nominee Viol End Pt
INO ; .. .

DEFINED IN GLOSSARY

Advi sory_TmeViol End
Prority._Tine Viol Start
Priorit yTime_ViolEnd
Msepdst
Tim eep
Subject-Viol End Pt

NomineeViol lEnd_-Pt;
DEFINE TABLES

SUFFIX Single record table which contains data
describing an encounter portion which
imediately succeeds the current encounter
portion in real time; fields defined like
global table ENCOUNTERS;

Advisory.Time_Viol End - SUFFIX.advviol-end.time;
IF Priority TimeViol End EQ NULL
HHEN

Priority Time Viol Start - SUFFIX.prior viol start time;
PriorityTime ViofEnd - SUFFIX.prior vol edtide;

ELSE
IF SUFFIX.prior.violendtime NE NULL

HEN
Priority_Time_Viol End - SUFFX.prior_violend time;

4' IF SUFFIX.sep_distance NULL AND Msep_Dst NE NULL
THEN

IF SUFFIX.msep distance LT Msep_ist
THEN
--- sep Dist - SUFFIX.msepdistance;

TimeMecp - SUFFIX.masep_t ime;
-~ ELSE

IF Macp_Dist EQNL

Mepdist - SUFFIX.mep_distance;
Time Msep - SUFFIX.mseptime;

Subject VIol End Pt - SUFFIX.fll viol end pt;
Nominee iofEndPt - SUFFIX.f l2violend-t;
END Suffix_Merge;

FIGURE 4-40
SUFFIX MERGE

-4

4-93



.- o _- . . -* . . . .. .

count of each block. This is all accomplished by Insert
Aircraft, the second of Maintenance's two components.

For the case of the trial probe, the ALLOBJECT TREE and

ALLOBJECT BLOCKS tables are not altered. This is to prevent a
new subject trajectory from being declared in conflict with the
trial trajectory while a controller decides whether to accept a
trial flight plan or not. In either case, whether a trial
trajectory is accepted or not, all references to the trial
flight identification are removed from SPARSE CELLS,
SPARSETREE, and ENCOUNTERS once the controller's decision is
entered into the automation system.

Figure 4-41 illustrates the organizational structure of the
Maintenance subfunction.

4.4.1 Delete Aircraft

4.4.1.1 Mission

The purpose of the Delete Aircraft component is to remove
obsolete data in ALLOBJECT TREE and ALLOBJECT BLOCKS pertaining
to the aircraft under consideration by the Maintenance
subfunction. This occurs every time that a trajectory is
revised due to resynchronization or a request for a flight plan
change. The intent is to "clean the slate" before invoking the
Coarse Filter, thus making it possible for the Coarse and Fine
Filters to treat this aircraft as if it were a new subject
aircraft entering the planning region.

4.4.1.2 Design Considerations and Component Environment

The Delete Aircraft routine is invoked by the Maintenance
subfunction whenever the trajectory of an aircraft in the
planning region is revised. A discussion of the tree traversal
technique used in this algorithm is given in Appendix C.

Input

The inputs to the Delete Aircraft component consist of a
combination of global tables, shared local tables and
variables, and input parameters. The input parameters to the
routine are Current Node Id, which identifies the node
currently being traversed in a search of the subtree to be
deleted, and Level, which specifies the node's level. Shared
local data consist of the SPARSE TREE and ALLOBJECT BLOCK
tables and the variable Max Level. SPARSE TREE defines the
structure of the tree associated with the subject aircraft.
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The table includes data for other aircraft as well; the
specific subject being referenced is keyed on the global
variable Subject Fl Id. ALLOBJECT BLOCKS contains the
occupancy count (that is, the number -of aircraft in a given

block) of the current root and is keyed on Current Node Id.
The shared local parameter Max Level specifies the cell (leaf)
level of the tree. Finally, the global table. ALLOBJECTTREE,
which is both input to and updated by the element Delete
Subtree, defines each node and all its children in the
subject's tree.

Output

The Delete Aircraft and Delete Subtree routines update both
ALLOBJECT TREE and ALLOBJECT BLOCKS by deleting the appropriate
records from each table as described below.

4.4.1.3 Component Design Logic

he Delete Aircraft algorithm is recursive. The algorithm
performs a preorder traversal through the tree searching for a
subtree to delete. Once found, a post order traversal of that
subtree is performed to delete each node of that subtree. Each
invocation corresponds to a move down the octal tree modelled
by the table ALLOBJECT TREE. Essentially, Delete Aircraft
searches those nodes (or, equivalently, blocks of the (x,y,t)
Coarse Filter grid) in ALLOBJECT TREE which are occupied by the
subject aircraft. If the subject aircraft is the sole occupant
of the input node (or, more accurately, of its corresponding
block), the entire subtree (whose root is the input note) is
deleted. Deletions of such subtrees are performed by the
element Delete Subtree (which is itself recursive). If the
subject aircraft is not the sole occupant, the algorithm
reduces the current value of Occupancy_Count in the table
ALLOBJECT BLOCKS associated with the node by one. It then
loops on the node's children, calling itself whenever one of
the child nodes is occupied by the subject aircraft.

Figure 4-42 shows a PDL representation of the Delete Aircraft
algorithm.

Delete Subtree

The Delete Subtree element performs a postorder traversal of
the ALLOBJECT TREE starting at the node whose OccupancyCount
is 1. First, the ALLOBJECT BLOCK record involving the root
node is deleted. Then Delete Subtree calls itself for a given
child of the root node and recursively traverses the tree until
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ROUTINE DeleteAircraft;
PARAMETERS Subject Fl Id IN, CurrentNodeIn IN, Level IN;
REFER TO SHARED LOCAL SPARSE TREE IN, Max Level IN, ALLOBJECT BLOCKS

DEFINE VARIABLES
Subject FlId Unique identifier for the flight plan of the

subject aircraft
Current Node Id Identifier of the current root of the subtree

being traversed

Level Current level of the root of the subtree being
traversed

OccupancyCount Number of aircraft co-occupying the block;
IF Level LT Max Level
Y-M Obloc levil#
"--tet to see if the subject is the only aircraft in block#

# of the ALLOBJECT tree#
SELECT FIELDS occupancy.count

INTO Occupancy Count
MM ALLOBJECT BLOCKS
WH-M E ALLOBJECT BLOCKS.node id E Current Node Id;

IF Occupancy Count 1 fIast oe# - d-
TYEN #delete-the sutree with root equal to CurrentNodeIdf

CALL Delete Subtree(Current Node Id IN, Level IN);
ELS-Gore tha one aircraft in the-blZk#

- reduce number of aircraft in the block#
UPDATE IN ALLOBJECT BLOCKS

(occupancy count- occupancy_count - 1)
WHERE ALLOBJECT BLOCKS.node id M Current Node Id;

#compare children f the SPARSE tree and the"ALLOBJECT tree#
.to see which subtree If any should be deleted#

REPEAT FOR EACH SPARSE TREE RECORD #for each child#
fthe SPARSE tree is identified by the flight plan id and#

Dthe children are identified by all records with the#
Dsame node id (e.g. Current Node Id)#

WHERE SPARSE liE.F _Id M Subject_11_d AND
-'-SPARSE TREE.node id BQ CurrentNode Id;
#recursivWly check To see if the subtree with root node idf

equal to SPARSE TREE.child id should be deleted#
CALL Delete AircrafT(SPARSE TRfE.child.id IN, Level+l IN);

END Delete Aircraft;

FIGURE 4-42

DELETE AIRCRAFT
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the leaf level is reached. Once the leaf is reached, this
routine returns to the previous level and deletes the
ALLOUTECT TREE record associated with the root at that level.
It then invokes itself for the next child, continuing until all
children have been processed and then returns to the previous
level and repeats the process.

Figure 4-43 shows a PDL representation of the Delete Subtree
algorithm.

4.4.2 Insert Aircraft

4.4.2.1 Mission

The mission of the Insert Aircraft component of Maintenance is
to modify the ALLOBJECT TREE and ALLOBJECT BLOCKS in order that
they include the trajectory data of the subject aircraft. This
is accomplished by combining (obtaining the union of) the
ALLOBJECT TREE and the SPARSE TREE records associated with the

" subject aircraft.

4.4.2.2 Design Considerations and Component Environment

The Insert Aircraft component is invoked by the Mainterance
subfunction after a new or revised subject aircraft trajectory
has been processed by the Coarse and Fine Filters. A
discussion of the tree traversal techniques used by this
algorithm is given in Appendix C.

The inputs to the Insert Aircraft component are basically the
same global tables, local shared tables and variables, and
input parameters that are required by the Delete Aircraft
component (Section 4.4.1, Delete Aircraft). In Delete
Aircraft, the SPARSE TREE records refer to the tree prior to
any trajectory revisions, whereas in Insert Aircraft, they
refer instead to the tree after the revisions have been made.

Output

Like Delete Aircraft, Insert Aircraft is a recursive
algorithm. Every invocation results in a modification of the
ALLOBJECTTREE and associated data in ALLOBJECTBLOCKS, which
are the outputs of this routine. When the process is finished,
the output is a new ALLOBJECT TREE containing references to the
trajectory data for the subjeit aircraft.
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ROUTINE DeleteSubtree;
PARAMETERS Current Node Id IN, Level IN;.

* REFER TO SHARED LOCAL ALLOBJECTTREE INOUT, MaxLevel IN,
ALLOBJECT BLOCKS INOUT;

DEFINE VARIABLES
CurrentNodeId Identifier of the current root of the subtree

being traversed
Level Current level of the root of the subtree being

traversed;
IF Level LT MaxLevel
THEN

4DELETE FROM ALLOBLJECT BLOCKS #delete records corresponding to the#
#tree tht will be deleted#
WHERE ALLOUJECT BLOCKS.node id M CurrentNodeId;

#delete subtree nodesl
REPEAT FOR EACH ALLOBJECT TREE RECORD for each child#

f the children are identifed 'Syil records with the same node_#
#1d#

WHERE ALLOBJECTTREE.node id EQ CurrentNodeId;
#delete next level of the-current subtree referenced by the#

#child#
CALL Delete Subtree(ALLOBJECT TREE.childid IN, Level+l IN);

DELETE FROP ALLOBJECT TREE; #delete current child record7T
the rd to delete is known from the above WHERE clause#

ELSE; bothing to delete at leaf level, since the leaf node is#
#referred to by the last non-le node. This reference is#
#to SPARSECELLS#

END DeleteSubtree;

FIGURE 4-43
DELETESUBTREE
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4.4.2.3 Component Design Logic

The Insert Aircraft algorithm is a recursive procedure. Each
invocation of the algorithm corresponds to a move one level
down the ALLOBJECT TREE. In essence, the algorithm copies all
those nodes which are in the SPARSE TREE associated with the
spbject aircraft, but not in the ALLOBJECT TREE and attachesthem in the proper positions of the ALL0BJECTR.E2.

The algorithm begins by adding one to the current value of the
occupancy count in the ALLOBJECT BLOCK associated with the root
(that is, key on Current Node Id. This is to indicate that a
new aircraft has been added to the list of object aircraft in
the ALLOBJECT TREE. The algorithm then loops on the children
of the SPARSE-TREE and ALLOBJECT TREE roots in parallel (that
is, all records with node id equal to the Current Node Id). If
it finds that a child nole exists in the SPARSE-TREE,- but not
in the ALLOBJECT TREE, it adds records to the ALLOBJECT TREE
associated with the current root and all children found in
SPARSE TREE. The outcome is the creation of a new version of
the AMLOBJECTTREE which contains a new node indicating
occupancy of a block that was previously unoccupied. Following
this procedure, the algorithm invokes itself, replacing the
previous root by the child node it has just created in
ALLOBJECT TREE and the parallel child node in the SPARSE TREE.
It increments the value of Level by one, signifying that the
following iteration will focus on the next level down in the
two trees. This process will be repeated until the last level
of both trees is reached.

In addition to invoking itself whenever a node is copied, the
algorithm also invokes itself if it discovers that a child node
exists in both trees. The new roots become the node
identifiers associated with the two child nodes and the value
of Level is incremented by one.

During each iteration of the algorithm, Level is compared to
MaxLevel. If it is determined that Max Level has been
reached, the algorithm returns to the previous level and
repeats the process for the next child at that level.
Figure 4-44 shows a PDL version of the Insert Aircraft
algorithm.
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ROUTINE Insert Aircraft;
PARAMETERS Subject Fl Id IN, Current Node Id IN, Level IN;
REFER TO SHARED LOCAL SPARSE TREE IN, ALLOBJECT TREE INOUT, Max

Level IN, ALLOBJECT BLOCKS INOUT;
DEFINE VARIABLES

Subject FlId Unique identifier for the flight plan of the
subject aircraft

Current Node Id Identifier of the root of the current subtree
being traversed

Level Level of the root of the current subtree;
IF Level LT Max Level

----check if block already exists#
IF COUNT(ALLOBJECT BLOCKS.node id Iq Current Node Id) E 0
THEN w block, add it

INSERT INTO ALLOBTECT BLOCKS (nodeid - CurrentNode Id,
occupancy_count = I);

ELSE #block already exists, update count#
UPDATE IN ALLOBJECTBLOCKS(occupancy_count - occupancy count +1T

WHERE ALLOBJECT BLOCKS.node id R Current Node Id;
REPEAT FOR EACH SPARSE TREE RECORD #for each child# -

fthe SPARSE tree is-identified by the flight plan id. and the#
#children are identified as all records with the same#
hode_id (that is, CurrentNode Id)O

WHERE SPARSE TREE.node id EQ CurrentNodeId AND SPARSE_
TREE.fl id R Subject Fl Id;

#check for-matching child block in the ALLOBJECT tree#
IF COUNT(ALLOBJECT TREE.node id M Current Node Id AND

ALLOBJECT TREE.chlld id !Q SPARSETREE."child-id) M 0
THEN #child rlock not found -

---7add child to ALLOBJECT tree#
INSERT INTO ALLOBJECT TREE (node id - Current Node Id,

child id - SPARSET EE.child_1d);
#check next"level for insertion#
CALL Insert Aircraft(SPARSE TREE.child id IN, Level + 1 IN);

ELSE; E--thing at-leaf to create,-since the leaf node data io-
- #referred to by the child of last nonleaf node. The#

#leaf level data is in SPARSE CELLS#
END Insert_Aircraft;

FIGURE 4-44
INSERT AIRCRAFT
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APPENDIX A

FLIGHT PLAN CONFLICT PROBE DATA

"- SPARSE TREE:

"- FLID I NODE ID I CHILDID

This table defines the blocks of the airspace grid through which
each flight plan trajectory passes and their relationships to larger
blocks in the grid.

FL ID Unique identifier which distinguishes one flight

defined on the system

NODE ID Unique Identifier of a block of airspace in an x,y,t
grid

CHILD ID Unique identifier of a block of airspace in an x,y,t
grid which Is an octant of that given by NODE ID

.'I
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BUFFRCELLS:

I NODEID I minz I max__z entry__time I exittime I
+!

This table defines the cells in the vicinity of the flight plan
trajectory of the subject aircraft, the range of altitudes the
trajectory covers in each cell, and the times associated with the
cusp preceding entry and the cusp following exit for each cell.

NODE ID Unique identifier of an airspace cell in an x,y,t
grid

min z The lowest altitude through which the subject
aircraft's trajectory passes in the vicinity of
this cell

max z The highest altitude through which the subject
aircraft's trajectory passes in the vicinity of
this cell

entry_time The time associated with the cusp which precedes
entry into the vicinity of this cell

exittime The time associated with the cusp which follows exit
from the vicinity of this cell

('Vicinity" means the cell and its orthogonal and diagonal
neighbors.)

A-2
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BUFFER TREE:

I NODEID I CHILD ID I

This table defines the blocks of the airspace grid in the vicinity
of the flight plan trajectory of the subject aircraft and their
relationships to larger blocks in the grid.

NODEID Unique identifier of a block of airspace in an x,y,t grid

CHILD ID Unique identifier of a block of airspace in an x,y,t grid
which is an octant of that given by NODEID

ALLOBJECT BLOCKS:

i NODEID I occupancycount I

This table defines the blocks of the airspace grid through which any
current flight plan trajectory passes, the number of octants in each
block through which the trajectories pass, and the number of trajec-
tories which pass through each block.

NODE ID Unique identifier of a block of airspace in an
X,y,t grid

occupancy.count The number of trajectories which pass through this
block

A-3
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ALLOBJECT TREE:

NODEID I CHILDID I

This table defines the blocks of the airspace grid through which any
current flight plan trajectory passes and their relationships to
larger blocks In the grid.

NODEID Unique identifier of a block of airspace in an xy,t grid

CHILD.ID Unique identifier of a block of airspace in an xy,t grid
which is an octant of that given by NODE ID

A-
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NOMINEES:

I FLID I NODEID s subjectentry_time I subject exit time

nominee entrytime nominee exit time

This table defines the cells for which other flight plan trajec-
tories may be in conflict with the subject aircraft's trajectory,
the times associated with the cusp preceding entry and the cusp

following exit for each cell for both the subject aircraft's
trajectory and the nominee aircraft's trajectory.

FLID Unique identifier which distinguishes one
nominee flight plan from all other flight
plans currently defined on the system

NODE ID Unique identifier of an airspace cell in an
x,y,t grid

subject entry.time The time associated with the cusp which
precedes entry into this cell for the
subject aircraft's trajectory

subject exit time The time associated with the cusp which follows
exit from this cell for the subject
aircraft's trajectory

nominee entry_ te The time associated with the cusp which
precedes entry Into this cell for the
nominee aircraft's trajectory

nominee ext_tine The time associated with the cusp which follows
exit from this cell for the nominee
aircraft's trajectory

. A-5
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SPARSE CELLS:

IFLIGHTPLANID INODEID Imin z Imax z Ientrytime Iexit-time

This table defines the cells which each flight plan trajectory
enters, the range of altitudes the trajectory covers in each cell,
and the times associated with the cusp preceding entry and the cusp
following exit for each cell.

FLIGHTPLAN ID Unique identifier which distinguishes one flight
plan from all other flight plans currently defined
on the system

NODE ID Unique Identifier of an airspace cell in an x,y,t
grid

min _z The lowest altitude through which this flight plan
trajectory passes in this cell

max z The highest altitude through which this flight plan
trajectory passes in this cell

Aentry time The time associated with the cusp which precedes
entry into this cell

exit time The time associated with the cusp which follows exit
from this cell

AA-
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SHARED LOCAL VARIABLES

H Cell Dimension Quantization size for cells in horizontal x-y

Max Level The level number associated with the leaf level

of the octal trees SPARSETREE, BUFFERTREE

and ALLOBJECT TREE

Real Subject Fl Id In the case of a trial probe, this variable

contains the flight plan identifier
associated with the subject aircraft's
actual flight plan and Subject Fl_Id
contains a dummy flight plan identifier
associated with the trial flight plan

T_Cell Dixension Quantization size for cells in time

T Offset A translation in t in the conversion of time to
cell coordinates

TrialFlag A flag Indicating whether or not the FPCP was
called for a trial probe

X_Offset A translation in y in the conversion of
geometric to cell coordinates

Y Offset A translation in x in the conversion of
geometric to cell coordinates

h. q

i'
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APPENDIX B

M&TBMATICAL DERIVATION OF FORMULAS

B.1 The Time of Violation Formulas

Definitions: D(t) - horizontal separation distance between the

two aircraft at time t

T - Time OverlapMin

PW(t) - position vector of subject aircraft at

time t

P n(t) - position vector of nominee at time t

Vs - velocity vector of subject aircraft (assumed

to be constant over the length of the segment)
Vn = velocity vector of nominee (also assumed to

be constant)

IP(t) (t) - Pn(t) - relative position

I vector at time t

Vr Vs - Vn W relative velocity vector

SI s IIo norm (length) of a vector
- dot product of two vectors

Analysis:

First calculate D(t):

D(t) - liPa(t) - Pn(t)I - [IPr,(t)I - Wpr(t) " Pr(t)3

- {fpr(T) + (t - T) Vr" EP r(T) + (t-T) Vr}

fun(2I (tTP(T-V + (t-T )2 I'

To calculate the time at which D(t) is equal to Seph, i.e., the
starting and ending times of the violation, set D(t) - Seph or,

equivalently, D2(t) - Seph2  (to produce a quadratic equation)
and solve for t.
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Let

A -IIVjI2

B- 2P (T) • Vr r

C -IIPr (T)l 2

then the above equation becomes:

A(t-T)2 + B(t-T) + C - Seph2  0 0

If the discriminant of this equation, B2 - 4A(C - Seph 2 ) is less
than 0, then the roots are imaginary, implying that the separation
distance is never equal to Seph; consequently no encounter is
predicted. If the discriminant is 0, there are two real and equal
roots, meaning that the separation distance is equal to Seph at some
time t*, but is never less than Seph which would be considered a
violation of the FPCP horizontal separation standard. Thus, in this
case, as in the case above, no encounter is predicted. If the
discriminant is greater than 0, then there are two real and unequal
roots which provide the starting and ending times of a violation.
These times are obtained by way of the quadratic formula.

Tin Viol Start - -B - -B2 _ 4A(C - Seph2)3h
TimVil_ r 2A+

Tim Viol Znd - -3 + ED2 - 4A(C - Seph 2)3h + TT -eV - 2A

B.2 The Minimum Separation Formulas

Definitions: Same as those above

Analysis: First calculate D(t) as above, obtaining

D(t) fliP (T)JJ 2 + 2(t-T)P (T) Vr + (t-T) 2 2VrI}

S A(t-T)2 + B(t-T) + C
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where

A -JlIV rI2

B - 2P (T) • V

C lpr r~ cu -IP P(T)I 2;

To find the time t* when this function is a minimum (t* - Time
Meep), one needs to differentiate D(t), set the result equal to 0.
and solve for t.

S 2A(t-T) + B

dt 2 tA(t-T)2 + B(t-T) + c] VI

implying that

2A(t-T) + B - 0

and, consequently, that

t - t* - Time eep - + T

Substituting into D(t) to obtain the minimum separation distance,
one gets

.%

Keep Dt = D(t*) - CA(t* - T)2 + B(t* - T) + C]h
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APPENDIX C

TREE TRAVERSAL TECHNIQUES USED BY THE COARSE FILTER
AND MAINTENANCE

C.A Recursion

Data structures in the form of trees lead naturally to
algorithms using recursion-that is, algorithms that call
themselves as subroutines. Typically, a recursive algorithm
must do some processing at each node of a tree. Some of this
processing, which may be denoted PBEFORE, may be required
before any of the node's children are processed, while other
processing, say PAFTER, may be required only after all chil-
dren have been processed. Other processing at the node may be
required on a per-child basis; however, the bulk of this,
especially that involving grandchildren and more remote descen-
dants, is similar to PBEFORE and PAPTER one level down,
with each child in turn taking the role f theparent.

A recursive algorithm generally looks only at a single node and
its immediate children at any one time. In this volume, all
trees have the property that all leaves are at the same level.An algorithm can then determine whether a node is a leaf by
knowing its level. When a leaf is reached, there are no more
children, and different processing, say PLEAF, is performed.
A typical recursive algorithmt which we denote Treesearch, is
called via a statement such as CALL Treesearch (ROOT IN, 0 IN),
while the procedure Treesearch looks like this:

ROUTINE Treesearch (Node IN, Level IN);
IF Level EQ LeafLevel
THMEN

CA LEF;
ELSE
---KM! PBEFORE;

REPEAT FOR EACH Child;
CALL Treesearch (Child IN, Level + 1 IN);

CAL PAFTER;
END Treesearch;

Preorder and Postorder

It is sometimes useful to assign an ordering to a tree's
nodes. Consider an ant which starts at the root and crawls
along the branches, always taking the leftmost unvisited
branch, doubling back at the leaves, so that each branch is
eventually traversed exactly once ending at the root, as shown

C-1
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(a) Path of the ant around the treeII
Im

3 4 6 7 8 10

(b) Preorder. The ant assigns the labels as it visits the nodes" L

10
39

1 24 8-6I
(c) Postorder. The ant withholds the parent's label until

all its children are labeled

FIGURE C-1

ORDERINGS OF NODES ON A TREE
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in Figure C-la. If the ant counts (and labels) each node as it
is first visited, the labels will appear as in Figure C-lb.
Note that the root of each subtree has a lower label than any
of its descendants. This ordering is called a preorder.

Treesearch can be used as a template to generate a preordering
of a tree: PgEFt and PLyAF consist simply of labeling
the current node with the next available number, starting with
"1" at the root. PAFTER is null. Specifically, using a
global variable NUMBER initialized to "1" and an initial call
such as CALLT Preorder (ROOT IN, 0 'IN), the algorithm is as
follows:

ROUTINE Preorder (Node IN, LEVEL IN);
Assign Number to Node;
Number - Number + 1;
IF Level LT LeafLevel

TEPEAT FOR EACH Child;
CALL Preorder (Child IN, Level + 1 IN);

END Preo"er;

Another useful ordering of a tree's nodes is the 2ostorder,
which resembles the preorder except that a node's label is
withheld (by the ant) until all its children have received
labels (Figure C-ic). Treesearch generates a postordering if
the roles of PBEFORE and PAFTER ("label" and "do nothing")
are reversed:

ROUTINE Postorder (Node IN, Level IN);
IF Level LT LeafLevelTHIN

REPEAT FOR EACH Child;
CALL Postorder (Child IN, Level + 1 IN);

Amsign- Mber to Node;
Number - Number + 1;
END Postorder;

C.2 Insertion To and Deletion From the ALLOBJECT Tree Using
Treesearch

Treesearch can also be used as a template for inserting or

deleting the cells of a grid chain (sparse or buffer) from the
set of cells represented in the Allobject Tree. For an insert,
the Allobject node corresponding to each subject node must be
updated (to reflect one extra aircraft). Of course, if the
Allobject Tree node does not exist, it must first be created,
and created before any of its children can be added to the
object tree. The insertion must be accomplished in preorder;
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the node's creation belongs to PBEFORE" For a delete, the
Allobject node corresponding to each subject node must be
updated (to reflect one fewer aircraft). If the count is
thereby reduced to zero, the Allobject node must be
deleted--but any of its children must be deleted first
(otherwise they would become inaccessible). The deletion must

be accomplished iu postorder; the node's deletion belongs to

PA)TER" In an insert or delete, a leaf node may be treated
like any other node, except that its children are not checked.

C.3 Coarse Filter Using Treesearch

Treesearch can serve as a template for the coarse filter

itself. The search proceeds (in preorder) only along nodes
found in both the subject and the Allobject Tree (no conflict
can occur for a node unless both subject and object occupy the
corresponding grid block). Thus, PBEFORE consists of
eliminating from further consideration any of a node's children
not found in both trees. PLEAFp consists of adding the object
to the table of nominees -after an altitude screening).
PAFTER 'a null:

ROUTINE CoarseFilter (Node IN, Level IN);

IF Level LT LeafLevel

REPEAT FOR EACH of the eight possible children;
IF Child exists in both trees

CALL CoarseFilter (Child IN, Level + 1 IN);
ELSE

IF Altitude conditions met
WMN Add each object occupying this cell (corresponding

to Node) to a table of nominees;
END CoarseFilter;

Section 4.2 describes the details of an algorithm named Nominee
Detection which is called by the Coarse Filter to perform this
process.
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APPENDIX D

GLOSSARY

YW~Number in parentheses at the end of the definition refers to the
section in which the term is first used.

AAS Advanced Automation System (1.1)
Advisory Message displayed to the controller for conflicts
message not necessarily requiring prompt resolution; may

be in the f orm of text and/or a graphic display

Advisory The criteria used by the Fine Filter in theseparation horizontal and time dimensions to declare an
criteria advisory conflict (2.1.11)

Advisory Seph The horizontal distance used by FPCP for declaring
an advisory conflict between two aircraft (2.1.11)

Advisory Sept The time in advance of the advisory time of
violation that is allowed to the controller to
resolve the conflict (2.1.11)

Advisory time The initial time at which the distance between two
Vof violation aircraft trajectories falls below the advisory

SEP11 (2.1.11)

ABU Automated En Route Air Traffic Control (1.4.1.1)

Air traffic Same as "Controller" (1.4.1)
controller

Airspace grid Grid dividing the horizontal dimensions of the
planning region over time into discrete cells
(2.1.6)

Allobject Tree A tree which is the union of all individual object
* trees (2.1.8)

Altitude A directive from a controller to a pilot to be at,
restriction at or above, or at or below a given altitude by a

* given point along the flight path (1.4.1)

Ancestor (of Either a parent of the node, or a parent of an an-
a tree node) cestor of the node (2.1.8)

D-1

. . . . . .



Area Second level division (see "Center," "Sector") of
the Continental United States airspace. Con-
trollers are specially trained for an area' s
airspace, a region bounded horizontally by a
polygon and stretching vertically up to 60,000
feet (1.4.1)

Area supervisor The first-line supervisor of an area (1.4.1)

ARTCC Air Route Traffic Control Center (see "Center")

ATC Air Traffic Control (1.1)

Block A subset of the (xy,t) airspace grid associated
with one tree node (2.1.8)

Buffer grid The sparse grid chain plus all the cells which
chain share at least one vertex with a cell in the

sparse grid chain (2.1.7)

Buffer The tree formed from the subject's buffer grid
Subject Tree chain (2.1.8)

Cell Individual parallelepipeds in (x,y,t) space
within the airspace grid (2.1.6)

Center Administrative headquarters and operational
facility for control of a first level division
(see "Area," "Sector") of the Continental United
States airspace (there are currently 20 centers);
controls a region bounded horizontally by a
polygon and stretching vertically from the center
floor to 60,000 feet (1.4.1)

Child (of a A node sharing an edge with the given node and
tree node) having a higher level than the given node (2.1.8)

Coarse Filter An algorithm that compares the Buffer Subject
Tree to the Allobject Tree, eliminating from

:2; further consideration those objects which do not
share occupancy of at least one cell with the
subject (2.1.9)

Component Third level algorithmic unit in breakdown of AERA

(see "Function," "Subfunction," "Element") (1.3)
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Conflict Displayed violation of the FPCP advisory separa-
tion criteria by one aircraft's trajectory with
respect to another aircraft's trajectory (1.5.1)

Controller In this document, an en route radar controller as
defined in "Glossary of Common Terms in Air
Traffic Control Operations" [131 (1.4.1)

CUup A regular cusp or a maneuver envelope cusp; a
point in (x,y,z,t) space (2.1.4)

Delta horizon Interval at which horizon updates are invoked
(2.1.2)

Descendant (of Either a child of the node, or a child of a des-
a tree node) cendant of the node (2.I.8)

Display- The time at which an advisory message is first
as-advisory displayed to the controller (2.1.11)
tim

Display- The time at which a priority message is first
as-priority displayed to the controller (2.1.11)

DP Density Probe (1.4.2.2)

Element Fourth level algorithmic unit in breakdown of
AERA (see "Function," "Subfunction," "Component")(1.3)

EJOD Enroute Sector Loading (1.4.1.2.1)

Encounter Violation of the FPCP separation riteria found
by the Fine Filter between the trajectories of
the subject and a nominee (may be too far in the
future to display as a conflict) (2.1.10)

Encounter Nominee aircraft whose trajectory is in violation

aircraft of the FPCP separation criteria relative to the
subject's trajectory according to the Fine Filter
(2.1.10)

FAA Federal Aviation Administration (1.1)

Flue Filter An algorithm that tests subject-nominee segment
pairs against FPCP separation criteria using
rigorous mathematical analyses (2.1.10)
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Flight plan Pilot's intended route to reach his destination
as cleared by the air traffic control system

lPCP Flight Plan Conflict Probe (1.1)

FPCP advisory Same as "Advisory separation criteria" (2.1.11)
separat~ion

-- -criteria

.-FPC horizon Same as "horizon update" (2.1.2)
.'-.'.:update

Spriority Same as "Priority separation criteria" (2.1.11)
S..separation
.criteria

FPCP trajectory Same as "trajectory update" (2.1.3)
= update

Function A major building block of AERA-a principal
V. algorithm which is the top level unit in the

breakdown of AERA (see "Subfunction,"
"Component," "Element") (1.1)

GCOG Grid Chain Generator (3.3.1)

Grid cell Same as "Cell" (2.1.6)

Grid chain List of an aircraft's occupied cells (2.1.7)

Hold Same as "Holding pattern" (2.1.5)

Holding pattern An aircraft maneuver to delay its en route
progress; usually a circling or spiraling within
a specified airspace (2.1.5)

Holding pattern The entry or exit point of the holding pattern

%c sp expressed in spatial and temporal coordinates
* (2..5

Holding pattern Portion of the trajectory containing a holding
segment pattern and defined by a pair of holding pattern

cusps (2.1.5)

Horizon update A periodic updating of the time horizon which
causes an invocation of FPCP (2.1.2)
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ID ~ Identification (1.5.1)

Independent The variable (x, y, or t) in which a trajectory
Variable segment changes most rapidly (4.1.1.3)

Leaf (of a tree) A node with no children (2.1.8)

Level (of a Nonnegative integer assigned to the node (number
tree node) of edges on path to root)

aNeuver The geometric structure which encloses an air-
envelope space-sweeping maneuver (2.1.5)

Maneuver The entry or exit point of the maneuver envelope
envelope cusp expressed in spatial and temporal coordinates

(2.1.5)

maneuver Portion of the trajectory containing a maneuver
envelope segment envelope and defined by a pair of maneuver

envelope cusps (2.1.5)

NAS National Airspace System (1.1)

RASP National Airspace System Plan (1.4.1)

Node Same as "tree node" (2.1.8)

Nolnee An aircraft which was not eliminated from further
consideration by the Coarse Filter and therefore
will have its trajectory examined by the Fine
Filter (2.1.9)

Nominee Same as "Nominee" (2.1.9)
aircraft

Object An aircraft (which is not. the subject) whose
current trajectory has already been processed by
FPCP (1.5.2)

Occupied cell Cell selected by one of two mathematical formulas
to be in the grid chain for a trajectory; there
are sparse and buffer criteria for determining
occupancy (2.1.7)

Occupied block A block containing an occupied cell (2.1.8)
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Octant (of a One of eight blocks obtained by dividing the
block) given block in half along each of the x, y, and t

axes (2.1.8)

Parent (of a A node sharing an edge with the given node and
tree node) having a lower level than the given node (2.1.8)

PDL Program design language (1.2)

Planning region A center's airspace plus a buffer zone around it
for handoffs between centers (1.5.2)

Postorder Ordering of tree nodes by labelling child nodes
before their parent node (3.3.2.1.1)

--

Preorder Ordering of tree nodes by labelling a parent node
before its child nodes (3.3.2.1.1)

..'

Priority measage Message displayed to the controller when two
trajectories are in violation of FPCP priority

*, separation criteria (2.1.11)

Priority The criteria used by the Fine Filter in the
separation horizontal and time dimensions to declare a
criteria priority conflict (2.1.11)

Priority Seph The horizontal distance used by FPCP for
declaring a priority conflict between two
aircraft (2.1.11)

Priority Sept The time in advance of the priority time of
violation that is allowed to the controller to
resolve the conflict (2.1.11)

Priority time of The initial time at which the distance between
violation two aircraft trajectories falls below the

priority SEPH (1.5.2)

Regular cusp One of the endpoints of a segment expressed in
spatial and temporal coordinates (2.1.5)

Regular segment Portion of the trajectofy delimited by a pair of
(x,y,z,t) coordinates called cusps and
approximated by a straight line (2.1.5)

-.

Resynchroni- Recomputa~±nn of the estimated aircraft trajec-
zation tory when the trajectory is inconsistent with the

aircraft's recent radar track history (2.1.1)

D-6
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Root (of a tree) The (unique) node with level zero (and no parent)
(2.1.8)

Sector Third level division (see "Center," "Area") of
the Continental United States airspace to which a
controller is assigned; a region bounded horizon-
tally by a polygon and stretching vertically from
a floor (the ground or a specified altitude) to a
ceiling altitude (1.4.1)

Segment A regular segment or maneuver envelope segment
(2.1.4)

Seyneat chain Sequence of segments modelling a trajectory
through the planning region (2.1.4)

Sparse grid The grid chain conststing of cells selected as
chain occupied using the sparse criterion (2.1.7)

Sparse Subject A tree generated from an subject's sparse grid
Tree chain; it is used for subsequent maintenance

operations on the Allobject Tree (2.1.8)

Subblock (of a Same as "octant" (2.1.8)
b' &)

Subfuction Second level unit in the breakdown of AERA (see
"Function," "Component," "Element") (1.3)

Subject The aircraft whose new, updated, revised, or
alternative (trial probe) trajectory is currently
being tested by FPCP (1.5.2)

SP Sector Workload Probe (2.2.7)

TWM Traffic Alert and Collision Avoidance System
(1.4.1.2.3)

TIM horizon Time bound on FPCP consideration of future
trajectory information (2.1.2)

Trajectory Description of an aircraft's position in
(x,y,z,t) space, produced by applying altitude
and timing assumptions to the filed flight plan
and revised when necessary (1.4.1.1)

D-7
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Trajectory One of three events: 1) a trajectory is added,
update 2) a trajectory is resynclironized, or 3) a

* *~ trajectory is amended (2.1.3)

Tree A graph (set of (tree) nodes connected by edges)
with certain properties. Each node is assigned a
level (integer); each edge connects nodes whose
levels differ by 1; a single node has level 0; no
node has edges to more than one lower-level node
(2.1.8)

Tree node (also called node) An endpoint of an edge in a
tree (2.1.8)

Trial probe A teat using FPCP on a flight -plan proposed as an
alternative to one which already exists (1.5.1)

vector Controller-directed maneuver to provide an
aircraft with a change in route (2.1.5)

vertical A set of four points (vertices) associated with a
mneuver cusp that defines the vertical protection
envelope provided around an aircraft (2.2.4)

Vertex One of the four points in (z,yz,t) space
defining a vertical maneuver envelope (2.2.4)
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APPENDIX E

AERA PDL LANGUAGE REFERENCE SUIMMAR

E.1 Overview of the Use of AERA PDL

The AERA Program Design Language (PDL) has been created for the
single purpose of presenting algorithms in this specification
document. It evolves from previous AERA uses, and from MITRE
WP-81W552, "All About E," October 1981.

The description of this appendix is intended to support readers and
users of ADRA PDL. AERA PDL supports readable, yet structured and
consistent, descriptions of algorithms.

ADA PDL Features

* Relational data tables can be defined and manipulated by
constructs in the language.

% e Builtin functions are used to provide routine calculations
without showing all of the detail.

• Routines are used to modularize logic paths and data scope.

* Indentation is used to indicate statement grouping,
statement continuation, and levels of nesting.

* Routines explicitly define data or refer to predefined data.

ADA PDL Statements

The types of statements used in AERA PDL are:

9 English language statements
o assignment statements
* routine declaration statements
s data manipulation statements
e flow of control statements

E.2 Elements of AA PDL

eywordls

Keywords are words reserved for the usage of AERA PDL. Figure

E-1 presents all the keywords used in the current version of
AM PDL, grouped for convenience.

E-1
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routine construction keywords

CALL END ROUTINE

data reference keywords

PARAMETERS IN
REFER TO GLOBAL OUT

REFER TO SHARED LOCAL INOUT
DEFINED IN GLOSSARY

data definition keywords

DEFINE CONSTANT(S)
DEFINE VARIABLE(S)
DEFINE TABLE(S)

common arithmetic builtin function keywords

AVG MIN ABS EXP COS ARCCOS
Sum MAX CEIL L0G SIN ARCSIN
PROD MEDIAN FLOOR SQRT TAN ARCTAN

MOD

coordinate geometry builtin function keywords

DIST DOT INTERSECTION
MAGNITUDE CROSS INTERPOLATE
DIRECTION LINE

set builtin function keywords

UNIQUE COUNT CONCAT BOOL

FIGURE E-1
KEYWORD GROUPINGS
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set operator keywords

UNION INTERSECT

table manipulation keywords

SELECT FIELDS ALL
INSERT INT FROM
DELETE FROM INTO
UPDATE IN WHRE

ORDERED BY
RETURN COUNT

value constant keywords

ThUE FALSE NULL

comparison keywords

NOT GT ANY
N NE ALL
RND LT IS IN

-- IX ri'rIN

flow of control keywords

IF ... THEN ... ELSE
CHOOSE CASE ... WHEN ... THEN ... OTHERWISEFAR *,9 TO-"

REPEAT AHLE
REMT UNTMr
111 T'1 -ECH ... RECORD

0OTO

FIGURE E-1 (Concluded)
KEYWORD GROUPINGS
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operators

The operators of AERA PDL are summarized in Figure E-2.

The Assignment Operator

" * The format of the assignment statement is:
"target" - "expression"

s The target may be any type of data allowed by AERA PDL.

* The assignment operator includes the ability to fill a table
from data contained in other tables. The form of this use
of the assignment operator is:

"table name" - "table expression" ;

Budltin Functions

The builtin functions of AERA PDL accept either an single value
or data organized into an array. The author of a routine must
make it clear in comments and text what form of data is being
processed by the builtin function. Builtin functions are
listed in Figure E-3.

E.3 Routine Construction

The order of appearance of constructs In a routine is:

9 ROUTINE - required
s PARAMETERS - optional
s REFER TO GLOBAL - optional
" REFER TO SHARED LOCAL - optional
" DEFINED IN GLOSSARY - optional
" DEFINE CONSTANTS - optional
" DEFINE VARIABLES - optional
s DEFINE TABLES - optional
* logic flow - required, but will vary by routine.
* END - required

Three of the constructs are noted below:

The ROUTINE Construct

" The ROUTINE construct names the routine.

" The syntax of the ROUTINE construct Is:
ROUTINE "routine-name" ;

E-4



assignment operator

A- B A is assigned the value of B

arithmetic operators

A + B A plus BSA - B A minus B

A * B A times B
A / B A divided by B! A ** B A to the power of B

comparison operators

A LT B A is less than B
A LEB A is less than or equal to BA .T B A in greater than B
AGE B A is greater than or equal to B
ARB A is equal to B
A NE B A is not equal to B

logical operators

NOT A The logical opposite of A
!OR B Logical OR of A and B
ABD B Logical U of A and B

set operators

A INTERSECT B The set intersection of A and B
A ON B The set union of A and B
A IS IN B A is an element of the set B
A ISO'T IN B A is not an element of the set B

FIGURE E-2GROUPINGS OF AERA PDL OPERATORS
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FUNCTION MEANING

ABS(x) Absolute value of x

ARCCOS(x,y) Inverse cosine of the ratio of y to x

ARCSIN(x,y) Inverse sine of the ratio of y to x

ARCTAN( ,y) Inverse tangent of the ratio of y to x

AVG(A) Mean of the elements in A

BOOL(x) Numerical equivalent of logical condition:
1 if x is TRUE, 0 if x is FALSE

CEIL(x) Smallest integer greater than or equal to X

CONCAT(sls2,...,sN) Concatenation of strings sl through sN

COS(x) Cosine of x

COUNT(A) Number of elements of a set A

(ROSS(vl,v2) Cross product of vectors vl and v2

DIRECTION(pl,p2) Direction of p2 from pl in degrees from the
north; usually will be expressed in degrees
clockwise from true north

DIST(plp2) Euclidean distance between points pl and p2

DOT(vl,v2) Dot product of vectors vl and v2

EXP(z) e to the x power

FIDOR(x) Greatest integer less than or equal to x

FIGURE E-3
BUILTIN FUNCTIONS
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FUNCTION MEANING

INTEIPOLATE(a,bt) The point (1-t)a+tb

INTERSECTION(L1,L2) The point of intersection of the lines L1 and
L2

LINE(pl,p2) Vector (a,b,c) corresponding to the line

ax + by - c which passes through the points
pl and p2

LOG(x) Log of x in base e

MAGNITUDE(v) Length (i.e., norm) of the vector v

MAX(A) Largest of the elements in the set A

MEDIAN(A) Median value of the elements in set A

MIN(A) Smallest of the values in set A

MOD(xlx2) Remainder when xl is divided by x2

PIOD(k) Product of the elements in A

SIGNUM(x) Function yielding 1 if x GT 0, -1 if x LT 0,
and 0 if x EQ 0

SIN(x) Sine of x

S9R(x) Square root of x

SUM(A) Sum of the elements in A

TAN(x) Tangent of x

UNIQUE(A) The set A with no duplicate elements

FIGURE E-3 (Concluded)
BUILTIN FUNCTIONS
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The CALL Construct

e The CALL construct invokes use of another routine as a

subrouttne and passes to it the data on which it is to
operate.

* The syntax of the CALL construct is:
CALL "routine name" ( "datausage-list" ) ;

* The data usage list in the CALL statement must match in
number and data utilization (IN, OUT, INOUT) the PARAMETE.S
stateme',.,t of the called routine

The END Construct

- The END construct shows the formal end of the routine.

" The syntax of the END construct is:
END "routine name" ;

E.4 Data Definitions

Data usage is defined in the constructs placed at the beginning of
each routine.

The structures, or organization of data, recognizable to AERA PDL
include cnstants, atomic variables, hierarchically structured
variables, arrays, tables, and field-types. The hierarchically
structured variables are the same as the structure variables of PL/I.

Within a table, the values corresponding to the definition of a
field-type are called fields when they are referred to individ-
ually. The values for a whole column of a table (or a subset of the

j whole column) may be referred to as a set of fields.

The following data definition constructs appear in the order shown,
if any are needed. The first line of each construct begins in
column 1, aligned with the ROUTINE construct.

The PARAMETERS Construct

o This construct provides usage information about the data
that are being provided by the calling routine in the form
of specification of read-only 'IN', write-only 'OUT', r
modification of an existing value IrINOUTI•
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* VarJ bles appearing in the PARAMETERS construct are still
local data for the routine being defined and as such appear
in the definition constructs.

* The syntax of the PARAMETERS construct is:
PARAMETERS "datausage list" ;

The REFER TO GLOBAL Construct

. This construct provides reference to, and usage information
for, data from the Global data model.

* The syntax of the REFER TO GLOBAL construct is:
REFER TO GLOBAL "datausagelist" ;

The REFER TO SHARED LOCAL Construct

" This construct provides reference to, and usage information
for, data from the Shared Local data model described in

Appendix A of the specification.

" The syntax of the shared local construct is:
REFER TO SHARED LOCAL 'data usage_list" ;

The DEFINED IN GLOSSARY Construct

* This construct provides reference to, and usage information
for, data from a specially prepared Glossary that central-
izes the definition of data variables that are used re-
peatedly within a given function of the algorithmic
specification.

* The syntax of the shared local construct is:

DEFINED IN GLOSSARY "data usagelist" ;

The DEFINE CONSTANTS Construct

* The use of named constants instead of in-line numerical
constants is available at the discretion of the author of an
algorithm. Named constants, if present, are to be declared
with this construct.

. The syntax of the DEFINE CONSTANTS construct is:
DEFINE CONSTANTS "constantdefinition block" ;
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The DEFINE VARIABLES Construct

e The syntax of the DEFINE VARIABLES construct is:

DEFINE VARIABLES "variable definition block" ;

The DEFINE TABLES Construct

9 The syntax of the DEFINE VARIABLES construct is:
DEFINE TABLES "table definition block";

E.5 Flow of Control Constructs

- The IF...THEN...ELSE Construct

* The syntax of the IF...THEN...ELSE construct is:
IF "condition"

.THEN
"statement-block"

[ ELSE
'Wstatement block" ]

The CHOOSE CASE Construct

* This construct provides a choice of one of several alterna-
tive logic paths depending on the first condition satisfied
among the conditions specified.

o The OTHERWISE phrase is optional.

o The syntax of the CHOOSE CASE construct is:
CHOOSE CASE

WHEN "condition" THEN
Wstatement blocW -

[ WHEN phrases repeated as necessary ]
[ OTHERWISE

Sstatement-block" I

The REPEAT WHILE Construct

o The syntax of the REPEAT WHILE construct is:
REPEAT WHILE "condition"

"stateuent.block"

The REPEAT UNTIL construct

o The syntax of the REPEAT UNTIL construct is:
REPEAT UNTIL "condition" ;

"statement block"

E-10
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-The REPEAT FOR EACH RECORD Construct

. This construct explicitly loops over all records in table,
'. or the subset of a table as specified in a WHERE phrase.

, The syntax of the REPEAT FOR EACH construct is:
REPEAT FOR EACH "table name" RECORD

[ WHERE "condition" ]-; -

ietatement block"

* Within the statement block of this loop, the construct of
"table naae"."field name" means only the ONE value that is
assoclited with the'record for that iteration of the loop.

* If it is necessary to refer to entire columns of the table
that is being looped on, the correct form of the reference

% is ALL("table name". "field name"). This construct means
exactly what "Table name"." field name" would have meant if
the loop had not bees in effect.

The GO TO Construct

9 The syntax of the GO TO construct is:

GO TO "label"

The FOR...TO... Construct
. The syntax of the FOR...TO... construct is:

FOR "loop indexw  "nlitial value" TO "last value"
"statement block"

E.6 Table Manipulation Constructs

The SELECT FIELDS Construct

. This construct extracts data from a table, or from a collec-

tion of tables, and makes it available to the routine.

* The syntax of the SELECT FIELDS construct is:
NA SELECT FIELDS [ UNIQUE ] [ "field list" I ALL)

FROM "table naielist"
["N o "local-variable name list" 3
[ WER "condition" I 3

[ RERE D BY "field name" ]
[RETURN COUNT ( "lcal variable") ];
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The INSERT INTO Construct

9 This construct allows a new record to be inserted into a
table.

* The syntax of the INSERT INTO construct is:
INSERT INTO "table name" ("field assignments")
[ WHERE "condition"]

e All insertions will preserve the assumption of no duplicate
records allowed in the table.

The UPDATE IN Construct

% * This construct allows existing records in a table to have
certain of their values changed.

e The syntax of the UPDATE IN construct is:
UPDATE IN "table name" ("fieldassignments")
TUWREconditon" ;

The DELETE FROM Constructia!
" This construct removes selected records from a table.

" The syntax of the DELETE FROM construct is:
DELETE FROM "table name"

[ WHERE "conditio" ] ;

- E. 7 Glossary

a comparison"

. There are four possible syntaxes for the comparison. These
are not given separate names, but will all be shown as if

they shared the same element of the language.

" The first syntax is for arithmetic comparisons:
"individual" GE I LE I GT ILT "individual"

i The second syntax is for general comparisons:
"individual" EQINE "individual"

* Both of these syntaxes are also valid if they are used to
compare two variables with the same complex organization,
for example two vectors of the same length or two field
types from the same table. In this case the result has as
many answers as there are elements in the compared variables.

E-12
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* The third syntax is for arithmetic comparisons:
"individualm GEILEIGTILT ANYIALL "set"

* The fourth syntax is for general comparisons:"individual" IS INJIS NOT IN "set"

e The latter two syntaxes are used to qualify an individual

based on any value in a set of values.

"condition"

* The syntax of the condition is:
"comparison" [AND lAND NOT I ORI oR NOT "comparison" ]

s The optional part of this syntax can be repeated as often as
required.

"constant definition block"

s The content of the constant definition block is three
columns: the constant names, the constant values, and the
constant descriptions.

" The constant names are aligned in a column 3 spaces indented
from the DEFINE CONSTANTS line.

" The other two columns are aligned as convenient, so that
there is no visual overlap between the columns.

"data usage list"

e A routine must declare the type of use for all of its data
that are known outside the routine.

, The three types of use are: read only (IN), create (OUT),
and modify an existing copy (INOUT).

* The format of a data usage list is:
"variable name" "usage type",

* An example of the format for data usage list is:
An Input Parameter IN, ALOCAL TABLE INOUT

"expression"

4 * Variables may be formed implicitly in expressions without
being separately named or defined.

E-13
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• Expressions are combinations of defined variables with the
operators and builting functions of AERA PDL.

In an expression, the implicit variable output from any
builtin function may be used as the input to any other
builtin function or operator.

" An expression, when fully evaluated, yields one variable.

"field assignments"

" This term only appears in statements referring to exactly
one table: INSERT and UPDATE.

" The form of the term is a comma-separated list:
"field assignment",

" The form of a single assignment is:
"field name" - "value-expression"

" In this term the field names do not have to be qualified by
the table name (that is'given in the statement).

"table definition block"

* Three types of definition are made in this block: table defi-
nitions, field-type definitions, and AGGREGATE definitions.

* Table definition lines are formatted as:
"table name" "table definition"

" Field-type definitions lines are formatted as:
"field name" "field definition"

s Aggregate definitions are formatted as:
"aggregate name" AGGREGATE ("field name list")

" Fields will contain only atomic (single-valued) variables.

* Aggregates may be used so that a program can manipulate
multiple fields in one statement when it makes sense to do
so.

"table-expression"

* Tables may be used implicitly in assignments or comparisons
being separately named or defined.
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* A table expression is either a table name or a SELECT state-
ment specifying the contents of the implicit table.

"table name"

* Generally, this is just the name of a table.

* In a few statements, there is a syntax that allows a user to
define a synonym and use it In the rest of that statement.
The intent of this option is to allow shorter where clauses
that are easier to read. The format of the synonym refer-
ence is:

"existing table name" ( "synonym" )

The statements that allow this use are those that have the
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT.

"variable definition block"

e The content of the variable definition block is two columns:
variable names and variable descriptions.

• Align variable names in a column that is indented 3 spaces
from the DEFINE VARIABLES line.

* Align variable definitions in a column as convenient; when a
structure element is defined, both the variable name and the
variable definition should be indented three spaces from the
name and definition of the next higher level variable.

a Three types of variables say be defined in this block:
atomic variables, arrays, and structured variables.

* Each element variable is described by a line:
"variable name" "variable definition"

o Each array variable is described by a line:
"variable name" ("dimensions") "variable definition"

* Each structured variable is described by multiple lines, one
line per lowest level element, and one line for each named
level of grouping/structure, with indentation levels used to
indicate the grouping.

* The names of subordinate elements of a structured variable
are named in all lower case letters.
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s The use of complex structured variables is not encouraged;
one reasonable use for them is to receive the values of
AGGREGATEs.

E.8 Other Uses and Conventions

Use of Special Characters In AERA PDL

* Parentheses are used for grouping statements and setting off

special parts of the constructs.

" Semicolons are used as statement terminators.

" Colons are used to terminate labels.

" Underscore is used to separate words in multi-word
identifiers.

" The symbols d'*', a are used as arithmetic
operators.

" The pound sign 'i' is used as a comment delimiter, for
beginning and end of each comment line.

" Comas are used as separators in lists of operands.

* Periods are used to separate fully qualified names.

Naming Conventions

* Keyword identifiers use only uppercase letters and are
underlined. They are the only underlined identifiers in the
PDL.

0 Table identifiers from the relational data base also use
only uppercase letters.

* AGREGATE identifiers for combinations of fields use no
uppercase letters.

* References to fields in a table, used in the normal course
of reference in AERA PDL, will be fully qualified by
including the table name.
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other Identifiers

" Identifiers for constants, routines, labels, arrays, and
hierarchically structured variables are all be nased using
word-initial capitals.

* For hierarchically structured variables, all of the sub-
ordinate elements within the structure use only lowercase
letters.

* For hierarchically structured variables, all references to
the subordinate elements in the structure will be in fully
qualified form using separate Identifiers.

" Global data and shared local data can include both tables
Aand parameters. The individual parameters are named using

word-initial capitals.

Use of the Formal Constructs In AERA PDL Statements

* Statements may use formal constructs or clear English
descriptions to specify the intended test or action.

* Any ADRA PDL statement is terminated by a semicolon,
Including any English statement outside of a comment.

e Below the level of statement, some statements have a finer
organization in terms of "phrases", usually occupying a line
per phrase and Indented one level from the first line of the

* original statement.

* Statement Organization

* Indentation is used to indicate statement grouping,
statement continuation, and levels of nesting.

* Any statement may have a label starting in column 1.

* Continuation lines are indented three spaces from the
original line of the statement.

9 Comnts are used as needed, bracketed by the special
character ''
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